

		TI-: "	30X P IultiVie	us w	
				\mathbb{D}	
		🤹 Tex	as Instr	UMENTS	
	tar 3.	n-1(1 [2 2)** .289	₩ 4284	[*] π4 .85
	2nd In log	quit mode math	insert delete stat-reg/dist data	$\left(\right)$	
0.00000	e ^o 10 ^o complex π_{i}^{e} \sqrt{x}^{o} \sqrt{x}^{o} \sqrt{x}^{o} \sqrt{x}^{2} clear var x_{abcd}^{yet} recall sto \rightarrow off on		random 1 nGr cost costants (convert 8 E 5 B 2 3	expr-eval table (an 1 op) base n 9 F 6 C 3 answer (-)	clear % set op X 0 + f+*d ★ enter

IEXAS

RUMENTS

- » Für Sekundarstufe I und Sekundarstufe II
- » Arithmetik und Algebra
- » Analysis
- » Stochastik

Inhaltsverzeichnis

film Cale 4. . 6 . . 1 л.

Optimierung der Annahme von Flugbuchungen

Bestimmen von Intervall-Wahrscheinlichkeiten bei einer Binomialverteilung (1)

Bestimmen von Intervall-Wahrscheinlichkeiten bei einer Binomialverteilung (2)

Schluss von der Gesamtheit auf die Stichprobe: Punkt- und Intervallschätzung

Bestimmen von 95 %- Umgebungen um den Erwartungswert (sigma-Regel)

Bestimmen von sigma-Umgebungen um den Erwartungswert

Das klassische Geburtstagsproblem und Variationen

Testen von Hypothesen – Wahrscheinlichkeit für einen Fehler 2. Art

Approximation der Binomialverteilung durch die Poisson-Verteilung

Bestimmen von Wahrscheinlichkeiten bei normalverteilten Zufallsgrößen

Arbeitsblatter für Sekundarstute I	6
Addieren und Subtrahieren von Brüchen	6
Multiplizieren und Dividieren von Brüchen	7
Vergleich von statistischen Daten	8
Wie groß ist die Anzahl der Primteiler? (Spiel)	9
Punktprobe für eine Geradengleichung	10
Kontrolle der Lösung eines linearen Gleichungssystems mit 2 Gleichungen und 2 Variablen	11
Ermitteln der Lage des Scheitelpunkts und der Nullstellen einer quadratischen Funktion	12
Bestimmen der Lösung einer quadratischen Gleichung (mit Wurzeltermen)	13
Umformung von Wurzeltermen	14
Bestimmen der Verdopplungszeit bei Wachstumsprozessen	15
Arbeitsblätter für Sekundarstufe II	16
Arbeitsblätter zur Analysis	16
Ermitteln eines einbeschriebenen Rechtecks mit maximalem Flächeninhalt	16
Ermitteln von Nullstellen einer ganzrationalen Funktion 3. Grades	17
Einführung in die Differenzialrechnung: Untersuchung von Sekantensteigungen	18
Untersuchung des Monotonieverhaltens und der Krümmung eines Graphen	19
Ermittlung der Nullstellen einer ganzrationalen Funktion 4. Grades mithilfe des NEWTON Verfahrens	20
Einführung der Integralrechnung – Bestimmen von Ober- und Untersummen (1)	21
Einführung der Integralrechnung – Bestimmen von Ober- und Untersummen (2)	22
Integralrechnung: Bestimmen von Flächen zwischen Graph und x-Achse (1)	23
Integralrechnung: Bestimmen von Flächen zwischen Graph und x-Achse (2)	24
Arbeitsblätter zur Analytischen Geometrie	25
Untersuchung des möglichen Schnittwinkels einer Geraden mit einer Geradenschar	25
Ermittlung des Abstands eines Punktes von einer Geraden	26
Arbeitsblätter zur Regressions- und Korrelationsrechnung	27
Regressionsrechnung: Modellieren durch eine lineare Funktion	27
Regressionsrechnung: Modellieren durch eine quadratische Funktion	28
Regressionsrechnung: Optimierung einer exponentiellen Modellierung	29
Arbeitsblätter zur Stochastik	30
Binomialkoeffizienten – Gewinnwahrscheinlichkeiten beim Lottospiel 6 aus 49	30
Bestimmen einer Binomialverteilung (vollständige Verteilung)	31
Bestimmen einer Binomialverteilung (einzelne Werte)	32
Berechnung des Erwartungswerts und der Varianz von Binomialverteilungen	33

Stochastik Grundkurs	44
Beispiele zum Einsatz des TI-30X Plus MultiView [™]	44
Würfelspiel: Aufgabenstellung Teilaufgabe a)	44
Würfelspiel: Aufgabenstellung Teilaufgabe b)	46
Würfelspiel: Aufgabenstellung Teilaufgabe c)	48
Würfelspiel: Aufgabenstellung Teilaufgabe d)	50

34

35

36

37

38

39

40

41

42

43

Vorwort

Dem Beschluss der Kultusministerkonferenz zu den Bildungsstandards für die Allgemeine Hochschulreife folgend wurde das "Institut für Qualitätsentwicklung im Bildungswesen" IQB beauftragt, den Aufbau eines Pools von Abituraufgaben auch für das Fach Mathematik zu konzipieren. Dieser Aufgabenpool steht den Ländern ab dem Schuljahr 2016/2017 als Angebot für den Einsatz in der Abiturprüfung zur Verfügung, erste Beispielaufgaben wurden bereits veröffentlicht. Diese Abituraufgaben des IQB sind abgestimmt auf das Verwenden digitaler Hilfsmittel: zum einen werden Aufgaben bereitgestellt, für deren Bearbeitung als Hilfmittel ein **Computeralgebrasystem (CAS)** vorgesehen ist. Daneben werden Aufgaben erstellt, die mit einem **wissenschaftlichen Taschenrechner** zu bearbeiten sind, dessen Funktionsumfang sehr detailliert definiert ist.

Abgestimmt auf diese neuen Anforderungen an einen wissenschaftlichen Taschenrechner hat Texas Instruments den TI-30X Plus Multiview[™] entwickelt. Dieser Rechnertyp ist in den Abiturprüfungen der Bundesländer Bayern und Baden-Württemberg verbindlich vorgeschrieben. Baden-Württemberg geht noch einen Schritt weiter und setzt diesen Rechner zukünftig in den zentralen Abschlussprüfungen aller Schulformen voraus – auch um die von der KMK geforderte Durchlässigkeit von Bildungswegen zu fördern.

Wir freuen uns, für die Erarbeitung des vorliegenden Materials Heinz Klaus Strick als Autor gewonnen zu haben. Neben seinem langjährigen Wirken als Mathematiklehrer und Schulleiter des Landrat-Lucas-Gymnasiums in Leverkusen ist er vielen bekannt durch seine Mathematik-Kalender und insbesondere als Botschafter des Friedensdorfes in Oberhausen.

In den Arbeitsblättern für die Sekundarstufe I und für die Sekundarstufe II werden die vielfältigen Möglichkeiten des Einsatzes des TI-30X Plus Multiview[™] aufgezeigt. Das Themenspektrum der Arbeitsblätter versucht die Breite des Lehrplans abzudecken, gleichwohl zwingt ein begrenzter Umfang zu einer Auswahl.

Im Bereich der grafischen Darstellung von Ergebnissen stößt der Rechner naturgemäß an seine Grenzen. Für die Abbildung von Graphen verwendet der Autor die TI-Nspire™ CX CAS Software.

Die Arbeitsblätter sind so aufgebaut, dass an den Anfang das Problem in Form einer Beispielaufgabe gestellt wird, dessen Lösung anschließend mithilfe des TI-30X Plus Multiview[™] erfolgt. Im Material wurde mit Bedacht darauf verzichtet, einfach Tastenfolgen darzustellen. Stattdessen zeigt eine Vielzahl an Bildschirmabbildungen (Screenshots) die erforderlichen Einzelschritte zur Lösung. Weitere Aufgaben mit ähnlichem Schwierigkeitsgrad am Ende des Arbeitsblattes sollen zum selbstständigen Üben anregen.

Viel Freude und Erfolg bei der Arbeit mit dem TI-30X Plus Multiview[™]

wünscht Texas Instruments

Arbeitsblätter

für den TI-30X Plus MultiView[™]

Gebiet: Arithmetik Einsatz ab Stufe 5 (auch zur Wiederholung geeignet) Addieren und Subtrahieren von Brüchen **Beispiel-Aufgabe** 3<u>5</u>+<u>11</u> |ans⊧%+U% Der TI-30X Plus MultiViewTM kann einfache arithmetische Operationen mit Brüchen vornehmen. Notiere die fehlenden Zwischenschritte. Verwendete Option des TI-30X Plus MultiViewTM: Math-Print-Option (mode) Umwandeln einer gemischten Zahl in einen unechten Bruch und umgekehrt (math-Menü) Erläuterung der Lösung: Gleichnamige Brüche werden addiert (subtrahiert), indem man die Zähler addiert (subtrahiert). Daher müssen zunächst die Brüche gleichnamig gemacht werden. $3\frac{5}{12} + \frac{11}{18} = 3 + \frac{15}{36} + \frac{22}{36} = 3 + \frac{37}{36} = 3 + 1 + \frac{11}{36} = 4\frac{1}{36} = \frac{145}{36} \quad \text{oder} \quad 3\frac{5}{12} + \frac{11}{18} = \frac{41}{12} + \frac{11}{18} = \frac{123}{36} + \frac{22}{36} = \frac{145}{36} = 4\frac{1}{36} + \frac{11}{36} + \frac{11}{36} = 4\frac{1}{36} + \frac{11}{36} + \frac{11}{36} = 4\frac{1}{36} + \frac{11}{36} +$ Übungsaufgaben Welche Umformungen wurden vorgenommen? Notiere die fehlenden Zwischenschritte. Wenn das Ergebnis ein unechter Bruch ist, notiere es auch als gemischte Zahl. <u>49</u> 48 $\frac{5}{24}$ $\frac{7}{12} + \frac{7}{16}$ 즣-읔

Arbeitsblätter

für den TI-30X Plus MultiView[™]

Gebiet: Beschreibende Statistik

Einsatz ab Stufe 6

Vergleich von statistischen Daten

Beispiel-Aufgabe

Um einen Leistungsvergleich herzustellen, wurde in zwei Parallelklassen (a und b) ein Test durchgeführt. Dabei ergab sich bei den erreichten Punktzahlen folgende Häufigkeitsverteilung:

	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39
а	1	0	0	2	1	1	1	0	1	1	0	2	4	0	0	2	3	2	2	1	2	0	1	1
b	0	0	0	0	0	1	1	0	3	1	6	0	5	3	2	2	1	1	0	0	0	0	1	0

Vergleiche die beiden Verteilungen. Bestimme die dazu notwendigen Kenngrößen.

Verwendete Optionen des TI-30X Plus MultiView[™]:

1-Var Stats (2nd data)

Erläuterung der Lösung

Die Daten werden in die zur Verfügung stehenden Listen L1, L2 und L3 eingegeben, und zwar: in Liste L1 die Punktzahlen von 16 bis 39 (einschl.), die als Ergebnisse des Tests aufgetreten waren, sowie die Häufigkeiten, mit denen diese Punktzahlen in den Klassen a bzw. b vorkamen, in Liste L2 bzw. Liste L3. Wählt man dann die 1-Variablen-Statistik im STAT-REG-Menü, dann fragt der Rechner noch ab, welche Listen ausgewertet werden sollen. Um die Leistungen der Klasse a zu bewerten, müssen die Daten aus Liste L1 mit den Häufigkeiten (FRQ = frequency) aus Liste L2 untersucht werden; entsprechendes gilt für die Daten aus Klasse b.

Der Vergleich der beiden Klassen zeigt: In Klasse a sind 28 Kinder, in Klasse b 27. Arithmetisches Mittel und Median liegen in Klasse a oberhalb der beiden Mittelwerte von Klasse b. Die Daten der Klasse a streuen jedoch stärker als die von Klasse b, wie man sowohl an der mittleren quadratischen Abweichung σ_X als auch an den Quartilen ablesen kann: 50% der Punktwerte liegen in Klasse a zwischen 24,5 und 33,5, in Klasse b zwischen 26 und 30. Außerdem liegen Maximum und Minimum in Klasse a weiter vom Median entfernt als in Klasse b.

	Anzahl	arithm.M.	σ_X	Min	Q1	Median	Q3	Max
а	28	28,86	6,12	16	24,5	29,5	33,5	39
b	27	27,70	3,52	21	26	28	30	38

Übungsaufgaben

Ve	Vergleiche die erreichten Punktzahlen der Klasse c mit denen aus Klasse a und b.																							
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39
С	0	1	0	1	1	2	1	0	1	1	3	1	3	2	3	2	1	3	1	1	0	0	0	1

Gebiet: Stochastik

Einsatz ab Stufe 7

Wie groß ist die Anzahl der Primteiler? (Spiel)

Beispiel-Aufgabe

Mithilfe des Zufallszahlengenerators des Taschenrechners werde eine natürliche Zahl aus der Menge {1, 2, ..., 1000} gewählt. Wie viele Primteiler enthält diese Zahl?

Verwendete Option des TI-30X Plus MultiView[™]: Pfaktor-Funktion des [math]-Menüs

M**ENNE** NUM DMS[™]R⇔P 2↑1cm(3:9cd(MENPfactor

Erläuterung der Lösung

Ganzzahlige Zufallszahlen kann man mithilfe des randint-Befehls aus dem Random-Menü des TI-30X Plus MultiView[™] bestimmen: Man gibt die gewünschte kleinste und größte Zahl der Menge an (mit Komma voneinander getrennt), vgl. 1. und 2. Screenshot. – Anschließend wird auf die Antwort der Pfaktor-Befehl angewandt (am Dreieck-Symbol vor "Pfactor" kann man ablesen, dass der Befehl im Anschluss an die natürliche Zahl eingegeben werden muss).

™NION 1:rand 28randint(randint(1,1000) 743	randint(1,1000) 743 ans⊧Pfactor 743
randint(1,1000)	randint(1,1000)	rangint(1,1000)
474	699	764
ans⊧Pfactor	ans⊧Pfactor	ans⊧Pfactor
2*3*79	3*233	<mark>2≌*191</mark>

An den Antworten lesen wir ab, dass die Zahl 743 eine Primzahl ist, die Zahl 474 drei Primteiler besitzt, die Zahl 699 zwei und die Zahl 764 ebenfalls nur zwei Primteiler (nämlich 2 und 191).

Übungsaufgaben

1. Mache ein Spiel mit einem Partner: Jeder von euch erzeugt eine Zufallszahl und bestimmt mit dem TI-Schulrechner die Anzahl der Primfaktoren. Gewonnen hat, wer die größere [kleinere] Anzahl von Primteilern hat. Wenn die Anzahl gleich ist, muss die Spielrunde wiederholt werden.

- > Welche der beiden Spielregeln ist günstiger?
- Protokolliere, wie oft die Anzahl der Primfaktoren 1, 2, 3, 4 beträgt. (Warum kann die Anzahl der Primteiler nicht größer als 4 sein?)

Anzahl Primfaktoren	1	2	3	4						
absolute Häufigkeit										
2. Der TI-Schulrechner kann natürliche Zahlen bis 999999 in Primfaktoren zerlegen. Führt in der Klasse den o. a. Zufallsversuch oft durch protokolliert, wie oft welcher Fall auftritt.										

Anzahl Primfaktoren	1	2	3	4	5	6	7
absolute Häufigkeit							

Heinz Klaus Strick

DEG

<u> Sunch Contains de B</u>

BÉdit function

Punktprobe für eine Geradengleichung

Beispiel-Aufgabe

Gegeben sind die Punkte P (2 | 4) und Q (7 | 6). Bestimme die Gleichung y = mx + b der Geraden, die durch die beiden Punkte verläuft, und überprüfe deine Rechnung mithilfe des TI-Schulrechners. Bestimme weitere Punkte, die auf der Geraden liegen.

Verwendete Optionen des TI-30X Plus MultiViewTM: Bestimmen einer Wertetabelle einer Funktion (table)

Erläuterung der Lösung

Zu bestimmen sind die Koeffizienten m und b der Geradengleichung. Zunächst bestimmt man die Steigung m der Geraden: Die Gerade durch die Punkte P und Q hat die Steigung

 $m = \frac{y_Q - y_P}{x_Q - x_p} = \frac{6 - 4}{7 - 2} = \frac{2}{5}$. Diesen Wert für m und die Koordinaten von P bzw. von Q kann man

in die Geradengleichung y = mx + b einsetzen:

$$4 = \frac{2}{5} \cdot 2 + b \iff b = \frac{16}{5} \qquad \text{bzw.} \quad 6 = \frac{2}{5} \cdot 7 + b \iff b = \frac{16}{5}$$

Kontrollrechnung mit dem TI-Schulrechner: Man gibt die Geradengleichung unter table als Funktionsgleichung ein. Im TABLE SETUP muss ggf. noch der Startwert (Start) und die Schrittweite (Step) korrigiert werden. Nach mehrfachem Drücken der enter-Taste erscheint die Wertetabelle der Funktion. Durch Scrollen der Wertetabelle kann man überprüfen, ob tatsächlich die Paare (2 | 4) und (7 | 6) in der Wertetabelle vorkommen. Wenn dies der Fall ist, hat man richtig gerechnet (d. h., die Punktkoordinaten erfüllen die lineare Funktionsgleichung), andernfalls ist ein Fehler in der Rechnung.

Alle Paare, die in der Wertetabelle vorkommen, beschreiben Punkte, die auf der Geraden liegen.

Beispielsweise liegen auch die Punkte (-9 | -2/5), (-8 | 0) und (10 | 36/5) auf der Geraden. Die Bruchzahlen -2/5 und 36/5 können durch Drücken der \odot -Taste in eine Dezimalzahl umgewandelt werden (erscheint unter der Tabelle).

in einem anderen Quadranten des Koordinatensystems liegen.

- (a) P (3 | 5); Q (-2 | 4)
- (b) P (1 | -3); Q (5 | 5)
- (c) P (-2 | 1); Q (4 | 1)

Q (4 | 1) (f) P (-1 | -1); Q (5 | -2)

Heinz Klaus Strick

Gebiet: Algebra

Einsatz ab Stufe 8

Kontrolle der Lösung eines linearen Gleichungssystems mit 2 Gleichungen und 2 Variablen

Beispiel-Aufgabe

Als Lösung des linearen Gleichungssystem mit 2 Gleichungen und 2 Variablen

$$\begin{vmatrix} 3x - 2y = 12 \\ 2x + 3y = -5 \end{vmatrix}$$

hat man das Zahlenpaar (x | y) = (2 | -3) gefunden. Die Kontrolle der Lösung kann durch Einsetzen der für x und y gefundenen Werte in die beiden Gleichungen erfolgen.

Alternativ kann man auch folgendes überlegen: Jede der beiden Gleichungen kann man mithilfe einer Geraden im Koordinatensystem darstellen. Die Koordinaten des Schnittpunkts der beiden Geraden geben die Lösung des Gleichungssystem an. Anstelle der Zeichnung kann man die Wertetabellen der beiden zugehörigen linearen Funktionen betrachten und dort die Lösung (d. h. den gemeinsamen Punkt der beiden Geraden) ablesen.

Verwendete Optionen des TI-30X Plus MultiView[™]: Bestimmen einer Wertetabelle einer Funktion ([table])

Erläuterung der Lösung

Umformen des linearen Gleichungssystems:

$$\begin{vmatrix} 3x - 2y = 12 \\ 2x + 3y = -5 \end{vmatrix} \Leftrightarrow \begin{vmatrix} -2y = -3x + 12 \\ 3y = -2x - 5 \end{vmatrix} \Leftrightarrow \begin{vmatrix} y = \frac{3}{2}x - 6 \\ y = -\frac{2}{3}x - \frac{5}{3} \end{vmatrix}$$

Dann gibt man nacheinander jede der beiden Geradengleichungen über den Editor der table-Funktion des TI-Schulrechners ein und prüft jeweils, ob das gefundene Lösungspaar in der Wertetabelle vorkommt. Wenn dies nicht der Fall ist, hat man sich bei der Lösung des linearen Gleichungssystems verrechnet.

Übungsaufgaben

1. Bestimme die Lösung des Gleichungssystems und überprüfe die gefundene Lösung mithilfe der table-Funktion des TI-Schulrechners.

(a) $\begin{vmatrix} 2x \\ 3x \end{vmatrix}$	$\begin{vmatrix} x - 5y = 7 \\ x + 1y = 5 \end{vmatrix} $	(b)	-1x+6y=1 $5x-2y=2$	(c)	$\begin{vmatrix} 0,3x - 0,7y &= -0,9 \\ -0,1x + 0,9y &= 2,3 \end{vmatrix}$	(d)	$\begin{vmatrix} \frac{2}{3}x - \frac{1}{6}y \\ \frac{1}{2}x + \frac{3}{4}y \end{vmatrix} =$	$=\frac{3}{2}$ $=-\frac{3}{4}$
--	---	-----	--------------------	-----	--	-----	--	--------------------------------

2. Bestimme die Lösung des linearen Gleichungssystem aus Aufgabe 1. indem du für die beiden Geradengleichungen, die das Gleichungssystem bestimmen, jeweils vom TI-Schulrechner eine Wertetabelle berechnen lässt. Diese Wertetabellen überträgst du in dein Schulheft (nebeneinander eine gemeinsame Spalte jeweils für die x-Werte, zwei Spalten für die zugehörigen y-Werte).

Bei welcher der vier Teilaufgaben treten bei dieser Methode Probleme auf?

insatz ab Stufe 8
ii

Ermitteln der Lage des Scheitelpunkts und der Nullstellen einer quadratischen Funktion

Beispiel-Aufgabe

Gegeben ist die quadratische Funktion f mit $f(x) = x^2 - 6x + 2$.

Ermittle die Lage des Scheitelpunkts der quadratischen Funktion. Untersuche, ob der Graph der Funktion Nullstellen besitzt. Gib ggf. deren Lage an.

Verwendete Optionen des TI-30X Plus MultiViewTM: Bestimmen einer Wertetabelle einer Funktion (table)

Erläuterung der Lösung

Die Graphen von quadratischen Funktionen sind achsensymmetrische Parabeln, deren Symmetrieachse durch den Scheitelpunkt der Parabel verläuft. Daher kann man die Lage des Scheitelpunkts an der Wertetabelle der Funktion ablesen. Durch Scrollen in der Wertetabelle erkennt man, dass der Graph der Funktion f mit symmetrisch zur Achse x = 3 ist, denn links und rechts davon treten jeweils gleiche Funktionswerte auf, z. B. f(2) = f(4) = -6.

Der Punkt S (3 | -7) ist daher der Scheitelpunkt der Parabel.

Dieser Punkt liegt unterhalb der x-Achse, und da die Parabel nach oben geöffnet ist, schneidet der Graph der Funktion die x-Achse in zwei Punkten. Die Nullstelle links liegt zwischen x = 0 (positiver Funktionswert) und x = 1 (negativer Funktionswert), die Nullstelle rechts entsprechend symmetrisch zu x = 3 zwischen x = 5 und x = 6:

Zur Kontrolle der exakten Nullstellen $x_1 = 3 - \sqrt{7}$ und $x_2 = 3 + \sqrt{7}$, die man durch Lösen der zugehörigen quadratischen Gleichung $x^2 - 6x + 2 = 0$ berechnet hat, muss man beim Durchgang durch das Menü von der Option "Auto" auf "x = ?" wechseln und dann in die leere x-Spalte der Tabelle den berechneten Wert eintippen. Der TI-Schulrechner gibt automatisch die Dezimalzahl-Darstellung der Nullstelle an. Entsprechend verfährt man mit der anderen Nullstelle.

	DEG	DEG	DEG	DEG
NAISES SCHULS Start=5 Step=1 Auto NEE S	+	x f(x)	χ μπελείτας ο	χ Επαδησίε Ο
	CHLC	<u> 1=3-Γ(7)</u>	1=0.354248688935	%=5.645751311065

Übungsaufgaben

1. Die x-Koordinate des Scheitelpunkts des Graphen der Funktion f mit $f(x) = x^2 + 3x + 3$ ist nicht ganzzahlig. In der Wertetabelle des TI-Schulrechners kann man die x-Koordinate des Scheitelpunkts trotzdem ablesen. Wieso? Wie erhält man dann die y-Koordinate des Scheitelpunkts? Was ergibt sich hinsichtlich der Nullstellen der Funktion?

2. Ermittle die Lage des Scheitelpunkts der quadratischen Funktion f. Untersuche, ob der Graph Nullstellen besitzt und gib ggf. deren Lage an.

a) $f(x) = x^2 - 5x + 1$ b) $f(x) = x^2 + 3x + 3$ c) $f(x) = x^2 + 4x + 4$ c) $f(x) = x^2 - 4x + 7$ c) $f(x) = -x^2 - 4x + 7$ c) $f(x) = -x^2 - 4x + 7$ c) $f(x) = -x^2 - 4x - 5$

Heinz Klaus Strick

Bestimmen der Lösung einer quadratischen Gleichung (mit Wurzeltermen) Beispiel-Aufgabe Gegeben ist die quadratische Gleichung x ² + bx + c = 0 Bestimmt werden soll ein Term für die allgemeine Lösung, sodass bei Einsetzen der Koeffizien- ten die Lösungen – sofern sie existieren – als Wurzelterme ausgegeben werden. Löse hiermit dann die Gleichungen (1) x ² + 4x - 7 = 0 (2) x ² - 8x - 2 = 0 (3) x ² + 10x + 5 = 0 (4) x ² - 2x + 3 = 0 Verwendete Optionen des TI-30X Plus MultiView TM : Definition von Operationen mithilfe von set op (2md) Ausführen von Operationen mithilfe von set op (2md) Ausführen von Operationen mithilfe von set op (2md) Ausführen von Operationen mithilfe von set op (2md) Mach Umformung erhält man die beiden Lösungen $x_i = -\frac{b}{2} + \sqrt{\frac{b^2}{4} - c}$ und $x_2 = -\frac{b}{2} - \sqrt{\frac{b^2}{4} - c}$ Der TI-30X Plus MultiView TM verfügt über die Option, eine bestimmte Abfolge von Operationen abzuspeichern; dabei können unterschiedliche Variablen verwendet werden. In dieser Aufgabe geht es also darum, einen Term für die Lösung einzugeben. Dies ist leider nur für <i>einen</i> Term möglich, beispielsweise die erste Lösung; für die zweite Lösung muss entsprechend SVorzei- chen geändert werden. Zunächst speichert man die Werte für die Variablen, dann führt man die gespeicherte Operation durch. $\overrightarrow{ope} = -\frac{b}{2} + \sqrt{\frac{b^2}{4} - c}$ (1) Die Lösungen der Gleichung x ² + 4x - 7 = 0 sind x ₁ = -2 + $\sqrt{11}$ und x ₂ = -2 - $\sqrt{11}$ (2) Die Lösungen der Gleichung x ² + 4x - 7 = 0 sind x ₁ = -2 + $\sqrt{11}$ und x ₂ = -2 - $\sqrt{11}$ (3) Die Lösungen der Gleichung x ² + 10x + 5 = 0 sind x ₁ = -2 + $\sqrt{11}$ und x ₂ = -5 - $2\sqrt{5}$ (4) Die Gleichung x ² + 10x + 5 = 0 sind x ₁ = -5 + 2 $\sqrt{5}$ und $x_2 = -5 - 2\sqrt{5}$ (4) Die Gleichung x ² + 10x + 5 = 0 sind x ₁ = -5 + 2 $\sqrt{5}$ und $x_2 = -5 - 2\sqrt{5}$ (4) Die Gleichung x ² - 2x + 3 = 0 hat keine reelle Lösung.	Gebiet: Algebra			Einsatz ab Stufe 8				
Beispiel-Aufgabe Gegeben ist die quadratische Gleichung x ² + bx + c = 0 Bestimmt werden soll ein Term für die allgemeine Lösung, sodass bei Einsetzen der Koeffizienten die Lösungen – sofern sie existieren – als Wurzelterme ausgegeben werden. Löse hiermit dann die Gleichungen (1) x ² + 4x - 7 = 0 (2) x ² - 8x - 2 = 0 (3) x ² + 10x + 5 = 0 (4) x ² - 2x + 3 = 0 Verwendete Optionen des TI-30X Plus MultiView TM : Definition von Operationen mithilfe von set op (2md) Ausführen von Operationen mithilfe von op (2md) Ausführen von Operationen mithilfe von op (2md) Mach Umformung erhält man die beiden Lösungen $x_1 = -\frac{b}{2} + \sqrt{\frac{b^2}{4} - c}$ und $x_2 = -\frac{b}{2} - \sqrt{\frac{b^2}{4} - c}$ Der TI-30X Plus MultiView TM verfügt über die Option, eine bestimmte Abfolge von Operationen abzuspeichern; dabei können unterschiedliche Variablen verwendet werden. In dieser Aufgabe geht es also darum, einen Term für die Lösung einzugeben. Dies ist leider nur für <i>einen</i> Term möglich, beispielsweise die erste Lösung; für die zweite Lösung muss entsprechend das Vorzei- chen geändert werden. Zunächst speichert man die Werte für die Variablen, dann führt man die gespeicherte Operation durch. $\boxed{p = -\frac{b}{2} + \sqrt{\frac{b^2}{4} - c}}$ (1) Die Lösungen der Gleichung x ² + 4x - 7 = 0 sind x ₁ = -2 + √11 und x ₂ = -2 - √11 (2) Die Lösungen der Gleichung x ² + 4x - 7 = 0 sind x ₁ = -2 + √11 und x ₂ = -2 - √11 (3) Die Lösungen der Gleichung x ² + 4x - 7 = 0 sind x ₁ = -2 + √11 und x ₂ = -2 - √11 (3) Die Lösungen der Gleichung x ² + 10x + 5 = 0 sind x ₁ = -5 + 2√5 und x ₂ = -5 - 2√5 (4) Die Gleichung x ² + 10x + 5 = 0 sind x ₁ = -5 + 2√5 und x ₂ = -5 - 2√5 (4) Die Gleichung x ² - 2x + 3 = 0 hat keine reelle Lösung. $\boxed{\frac{10^{0}+b}{5+c}} = \frac{10}{10} = \frac{b}{2} + \sqrt{\frac{b^2}{4} - c} = \frac{12}{5+c}} = \frac{10}{5} = \frac{2+b}{5} = \frac{10}{5} = \frac{10}{5+c} = \frac{10}{5} = \frac{10}{5+c} = \frac{10}{5} = \frac{10}{5+c} = \frac{10}{5} = \frac{10}{5+c} = \frac{10}{5+c}$	Bestimmen der Lösung einer quadratischen Gleichung (mit Wurzeltermen)							
Gegeben ist die quadratische Gleichung $x^2 + bx + c = 0$ Bestimmt werden soll ein Term für die allgemeine Lösung, sodass bei Einsetzen der Koeffizienten die Lösungen – sofern sie existieren – als Wurzelterme ausgegeben werden. Löse hiermit dann die Gleichungen (1) $x^2 + 4x - 7 = 0$ (2) $x^2 - 8x - 2 = 0$ (3) $x^2 + 10x + 5 = 0$ (4) $x^2 - 2x + 3 = 0$ Verwendete Optionen des TI-30X Plus MultiView TM : Definition von Operationen mithilfe von set op ($2nd(x)$) Ausführen von Operationen mithilfe von op ($2nd(x)$) Ausführen von Operationen mithilfe von op ($2nd(x)$) Aush Umformung erhält man die beiden Lösungen $x_1 = -\frac{b}{2} + \sqrt{\frac{b^2}{4} - c}$ und $x_2 = -\frac{b}{2} - \sqrt{\frac{b^2}{4} - c}$ Der TI-30X Plus MultiView TM verfügt über die Option, eine bestimmte Abfolge von Operationen abzuspeichern; dabei können unterschiedliche Variablen verwendet werden. In dieser Aufgabe geht es also darum, einen Term für die Lösung einzugeben. Dies ist leider nur für <i>einen</i> Term möglich, beispielsweise die erste Lösung; für die zweite Lösung muss entsprechend das Vorzei- chen geändert werden. Zunächst speichert man die Werte für die Variablen, dann führt man die gespeicherte Operation durch. $op=-\frac{b}{2}+\sqrt{\frac{b^2}{4}-c}$ (1) Die Lösungen der Gleichung $x^2 + 4x - 7 = 0$ sind $x_1 = -2 + \sqrt{11}$ und $x_2 = -2 - \sqrt{11}$ (2) Die Lösungen der Gleichung $x^2 + 4x - 7 = 0$ sind $x_1 = -2 + \sqrt{11}$ und $x_2 = -2 - \sqrt{11}$ (3) Die Lösungen der Gleichung $x^2 + 4x - 7 = 0$ sind $x_1 = -2 + \sqrt{11}$ und $x_2 = -2 - \sqrt{11}$ (3) Die Lösungen der Gleichung $x^2 + 4x - 7 = 0$ sind $x_1 = -5 + 2\sqrt{5}$ und $x_2 = -4 - 3\sqrt{2}$ $\frac{-\frac{b}{2} + \sqrt{\frac{b^2}{4} - c}}{-\frac{1}{2} + \sqrt{\frac{b^2}{4} - c}}}$ $\frac{-\frac{b}{2} + \sqrt{\frac{b^2}{4} - c}}{-$	Beispiel-Aufgabe							
Bestimmt werden soll ein Term für die allgemeine Lösung, sodass bei Einsetzen der Koeffizienten de Lösungen – sofern sie existieren – als Wurzelterme ausgegeben werden. Löse hiermit dann die Gleichungen (1) $x^2 + 4x - 7 = 0$ (2) $x^2 - 8x - 2 = 0$ (3) $x^2 + 10x + 5 = 0$ (4) $x^2 - 2x + 3 = 0$ Verwendete Optionen des TI-30X Plus MultiView TM : Definition von Operationen mithilfe von set op ($2md$) Ausführen von Operationen mithilfe von op ($2md$) Ausführen von Operationen mithilfe von op ($2md$) Mach Umformung erhält man die beiden Lösungen $x_1 = -\frac{b}{2} + \sqrt{\frac{b^2}{4} - c}$ und $x_2 = -\frac{b}{2} - \sqrt{\frac{b^2}{4} - c}$ Der TI-30X Plus MultiView TM verfügt über die Option, eine bestimmte Abfolge von Operationen abzuspeichern; dabei können unterschiedliche Variablen verwendet werden. In dieser Aufgabe geht es also darum, einen Term für die Lösung einzugeben. Dies ist leider nur für <i>einen</i> Term möglich, beispielsweise die erste Lösung; für die zweite Lösung muss entsprechend das Vorzei- chen geändert werden. Zunächst speichert man die Werte für die Variablen, dann führt man die gespeicherte Operation durch. $op=-\frac{b}{2}+\sqrt{\frac{b^2}{4}-c}$ (1) Die Lösungen der Gleichung $x^2 + 4x - 7 = 0$ sind $x_1 = -2 + \sqrt{11}$ und $x_2 = -2 - \sqrt{11}$ (2) Die Lösungen der Gleichung $x^2 - 8x - 2 = 0$ sind $x_1 = -2 + \sqrt{11}$ und $x_2 = -2 - \sqrt{11}$ (3) Die Lösungen der Gleichung $x^2 + 4x - 7 = 0$ sind $x_1 = -2 + \sqrt{11}$ und $x_2 = -2 - \sqrt{11}$ (3) Die Lösungen der Gleichung $x^2 + 10x + 5 = 0$ sind $x_1 = -5 + 2\sqrt{5}$ und $x_2 = -5 - 2\sqrt{5}$ (4) Die Gleichung $x^2 - 2x + 3 = 0$ hat keine reelle Lösung. $\frac{10+b}{5+c}$ $\frac{10}{5}$ $-\frac{b}{2} + \sqrt{\frac{b^2}{4}-c}$ $\frac{10}{5}$ $-\frac{b}{2} + \sqrt{\frac{b^2}{4}-c}$ $\frac{10}{5}$ $-\frac{b}{2} + \sqrt{\frac{b^2}{4}-c}$ $\frac{10}{5}$ $\frac{10}{5}$ $-\frac{b}{2} + \sqrt{\frac{b^2}{4}-c}$ $\frac{10}{5}$ $\frac{10}{5}$ $\frac{10}{5}$ $\frac{10}{5}$ $\frac{10}{5}$ $\frac{10}{5}$ $\frac{10}{5}$ $\frac{10}{5}$ $\frac{10}{5}$ $\frac{10}{5}$ $\frac{10}{5}$ $\frac{10}{5}$ $\frac{10}{5}$ $\frac{10}{5}$ $\frac{10}{5}$ $\frac{10}{5}$ $\frac{10}{5}$ $\frac{10}{5}$ $\frac{10}{5}$ \frac	Gegeben ist die quadr	atische Gleichung x ² + bx	+ c = 0					
Löse hiermit dann die Gleichungen (1) $x^2 + 4x - 7 = 0$ (2) $x^2 - 8x - 2 = 0$ (3) $x^2 + 10x + 5 = 0$ (4) $x^2 - 2x + 3 = 0$ Verwendete Optionen des TI-30X Plus MultiView TM : Definition von Operationen mithilfe von set op (2md)) Ausführen von Operationen mithilfe von op (2md)) Erläuterung der Lösung Nach Umformung erhält man die beiden Lösungen $x_1 = -\frac{b}{2} + \sqrt{\frac{b^2}{4} - c}$ und $x_2 = -\frac{b}{2} - \sqrt{\frac{b^2}{4} - c}$ Der TI-30X Plus MultiView TM verfügt über die Option, eine bestimmte Abfolge von Operationen abzuspeichern; dabei können unterschiedliche Variablen verwendet werden. In dieser Aufgabe geht es also darum, einen Term für die Lösung einzugeben. Dies ist leider nur für <i>einen</i> Term möglich, beispielsweise die erste Lösung; für die zweite Lösung unse sentsprechend das Vorzei- chen geändert werden. Zunächst speichert man die Werte für die Variablen, dann führt man die gespeicherte Operation durch. $op = -\frac{b}{2} + \sqrt{\frac{b^2}{4} - c}$ (1) Die Lösungen der Gleichung $x^2 + 4x - 7 = 0$ sind $x_1 = -2 + \sqrt{11}$ und $x_2 = -2 - \sqrt{11}$ (2) Die Lösungen der Gleichung $x^2 - 8x - 2 = 0$ sind $x_1 = -2 + \sqrt{11}$ und $x_2 = +4 - 3\sqrt{2}$ $\frac{4 + b}{-7 + c}$ $\frac{-b}{-7} + \sqrt{\frac{b^2}{4} - c}$ $\frac{-b}{-7} + \sqrt{\frac{b^2}{$	Bestimmt werden soll o ten die Lösungen – so	ein Term für die allgemeine fern sie existieren – als Wu	e Lösung, sodass be urzelterme ausgegeb	i Einsetzen der Koeffizien- en werden.				
(1) $x^2 + 4x - 7 = 0$ (2) $x^2 - 8x - 2 = 0$ (3) $x^2 + 10x + 5 = 0$ (4) $x^2 - 2x + 3 = 0$ Verwendete Optionen des TI-30X Plus MultiView TM : Definition von Operationen mithilfe von set op ($2nd$) Ausführen von Operationen mithilfe von op ($2nd$) Erläuterung der Lösung Nach Umformung erhält man die beiden Lösungen $x_1 = -\frac{b}{2} + \sqrt{\frac{b^2}{4} - c}$ und $x_2 = -\frac{b}{2} - \sqrt{\frac{b^2}{4} - c}$ Der TI-30X Plus MultiView TM verfügt über die Option, eine bestimmte Abfolge von Operationen abzuspeichern; dabei können unterschiedliche Variablen verwendet werden. In dieser Aufgabe geht es also darum, einen Term für die Lösung; für die zweite Lösung muss entsprechend das Vorzei- chen geändert werden. Zunächst speichert man die Werte für die Variablen, dann führt man die gespeicherte Operation durch. $op=-\frac{b}{2}+\sqrt{\frac{b^2}{4}-c}$ (1) Die Lösungen der Gleichung $x^2 + 4x - 7 = 0$ sind $x_1 = -2 + \sqrt{11}$ und $x_2 = -2 - \sqrt{11}$ (2) Die Lösungen der Gleichung $x^2 - 8x - 2 = 0$ sind $x_1 = -4 + 3\sqrt{2}$ und $x_2 = +4 - 3\sqrt{2}$ $\frac{4 + b}{7 + c}$ $\frac{-b}{-7} + \sqrt{\frac{b^2}{4} - \frac{c}{\sqrt{11} - 2}}$ $\frac{-b}{2 + \sqrt{\frac{b^2}{4} - c}}$ $\frac{-b}{2 +$	Löse hiermit dann die	Gleichungen						
Verwendete Optionen des TI-30X Plus MultiView TM : Definition von Operationen mithilfe von set op ($2 \text{md} \times 1$) Ausführen von Operationen mithilfe von op ($2 \text{md} \times 1$) Erläuterung der Lösung Nach Umformung erhält man die beiden Lösungen $x_1 = -\frac{b}{2} + \sqrt{\frac{b^2}{4} - c}$ und $x_2 = -\frac{b}{2} - \sqrt{\frac{b^2}{4} - c}$ Der TI-30X Plus MultiView TM verfügt über die Option, eine bestimmte Abfolge von Operationen abzuspeichern; dabei können unterschiedliche Variablen verwendet werden. In dieser Aufgabe geht es also darum, einen Term für die Lösung einzugeben. Dies ist leider nur für <i>einen</i> Term möglich, beispielsweise die erste Lösung; für die zweite Lösung muss entsprechend das Vorzei- chen geändert werden. Zunächst speichert man die Werte für die Variablen, dann führt man die gespeicherte Operation durch. $\boxed{op=-\frac{b}{2}+\sqrt{\frac{b^2}{4}-c}}_{n=1}^{m}$ (1) Die Lösungen der Gleichung $x^2 + 4x - 7 = 0$ sind $x_1 = -2 + \sqrt{11}$ und $x_2 = -2 - \sqrt{11}$ (2) Die Lösungen der Gleichung $x^2 - 8x - 2 = 0$ sind $x_1 = +4 + 3\sqrt{2}$ und $x_2 = +4 - 3\sqrt{2}$ $\boxed{\frac{4+b}{-7+c}} - \frac{-\frac{b}{-7}}{-7} = \frac{-\frac{b}{2}+\sqrt{\frac{b^2}{4}-c}}{-\frac{11}{7}-2} = \frac{-\frac{8+b}{-2+c}}{-\frac{7}{2}-2} = \frac{-\frac{b}{2}+\sqrt{\frac{b^2}{4}-c}}{-\frac{5}{2}-2\sqrt{5}}$ (3) Die Lösungen der Gleichung $x^2 + 10x + 5 = 0$ sind $x_1 = -5 + 2\sqrt{5}$ und $x_2 = -5 - 2\sqrt{5}$ (4) Die Gleichung $x^2 - 2x + 3 = 0$ hat keine reelle Lösung. $\boxed{\frac{10+b}{5+c}} = \frac{10}{15} = \frac{-\frac{b}{2}+\sqrt{\frac{b^2}{4}-c}}{-\frac{2}{2\sqrt{5}-5}} = \frac{-\frac{2}{2+b}}{-\frac{3}{2+c}} = \frac{10}{2} $	(1) $x^2 + 4x - 7 = 0$ ((2) $x^2 - 8x - 2 = 0$ (3) x^2	+ 10x + 5 = 0 (4)	$x^2 - 2x + 3 = 0$				
Definition von Operationen mithilfe von set op ($2md$) Ausführen von Operationen mithilfe von op ($2md$) Erläuterung der Lösung Nach Umformung erhält man die beiden Lösungen $x_1 = -\frac{b}{2} + \sqrt{\frac{b^2}{4} - c}$ und $x_2 = -\frac{b}{2} - \sqrt{\frac{b^2}{4} - c}$ Der TI-30X Plus MultiView TM verfügt über die Option, eine bestimmte Abfolge von Operationen abzuspeichern; dabei können unterschiedliche Variablen verwendet werden. In dieser Aufgabe geht es also darum, einen Term für die Lösung einzugeben. Dies ist leider nur für <i>einen</i> Term möglich, beispielsweise die erste Lösung; für die zweite Lösung muss entsprechend das Vorzei- chen geändert werden. Zunächst speichert man die Werte für die Variablen, dann führt man die gespeicherte Operation durch. $0p=-\frac{b}{2}+\sqrt{\frac{b^2}{4}-c}$ (1) Die Lösungen der Gleichung $x^2 + 4x - 7 = 0$ sind $x_1 = -2 + \sqrt{11}$ und $x_2 = -2 - \sqrt{11}$ (2) Die Lösungen der Gleichung $x^2 - 8x - 2 = 0$ sind $x_1 = -2 + \sqrt{11}$ und $x_2 = +4 - 3\sqrt{2}$ $\frac{4 + b}{-7 + c} = -\frac{4}{-7} + \frac{b^2}{2} + \frac{b^2}{4} - c$ $n=1$ (3) Die Lösungen der Gleichung $x^2 + 10x + 5 = 0$ sind $x_1 = -5 + 2\sqrt{5}$ und $x_2 = -5 - 2\sqrt{5}$ (4) Die Gleichung $x^2 - 2x + 3 = 0$ hat keine reelle Lösung. $\frac{10 + b}{5 + c} = 105 + \frac{b^2}{2} + \frac{b^2}{4} - c$ $n=1$ $\frac{10 + b}{5 + c} = 105 + \frac{b^2}{2} + \frac{b^2}{4} - c$ $\frac{-2}{2\sqrt{5} - 5} = \frac{-2}{3} = \frac{2}{3} = 2$	Verwendete Optionen	des TI-30X Plus MultiView	TM.	DEG				
Ausführen von Operationen mithilfe von op ($2nd$) Erläuterung der Lösung Nach Umformung erhält man die beiden Lösungen $x_1 = -\frac{b}{2} + \sqrt{\frac{b^2}{4} - c}$ und $x_2 = -\frac{b}{2} - \sqrt{\frac{b^2}{4} - c}$ Der TI-30X Plus MultiView TM verfügt über die Option, eine bestimmte Abfolge von Operationen abzuspeichern; dabei können unterschiedliche Variablen verwendet werden. In dieser Aufgabe geht es also darum, einen Term für die Lösung einzugeben. Dies ist leider nur für <i>einen</i> Term möglich, beispielsweise die erste Lösung; für die zweite Lösung muss entsprechend das Vorzei- chen geändert werden. Zunächst speichert man die Werte für die Variablen, dann führt man die gespeicherte Operation durch. $o_{P} = -\frac{b}{2} + \sqrt{\frac{b^2}{4} - c}$ (1) Die Lösungen der Gleichung $x^2 + 4x - 7 = 0$ sind $x_1 = -2 + \sqrt{11}$ und $x_2 = -2 - \sqrt{11}$ (2) Die Lösungen der Gleichung $x^2 - 8x - 2 = 0$ sind $x_1 = -4 + 3\sqrt{2}$ und $x_2 = +4 - 3\sqrt{2}$ $4\frac{+b}{-7+c}$ $\frac{-b}{-7+c}$ $\frac{-b}{-7+c}$ $\frac{-b}{-7+c}$ $\frac{-b}{-7+c}$ $\frac{-b}{-2} + \sqrt{\frac{b^2}{4} - c}$ n=1 $\frac{-b}{-2+c}$ $\frac{-b}{-2}$ $\frac{-b}{-2+c}$ $\frac{-b}{-2}$ $\frac{-b}{-2+c}$ $\frac{-b}{-2}$ $\frac{-b}{-2+c}$ $\frac{-b}{-2}$ $\frac{-b}{-2+c}$ $\frac{-b}{-2}$ $\frac{-b}{-2+c}$ $\frac{-b}{-2}$ $\frac{-b}{-2+c}$ $\frac{-b}{-2}$ $\frac{-b}{-2+c}$ $\frac{-b}{-2}$ $\frac{-b}{-2+c}$ $\frac{-b}{-2}$ $\frac{-b}{-2-c}$ $\frac{-b}{-2}$ $\frac{-b}{-2-c}$ $\frac{-b}{-2}$ $\frac{-b}{-2-c}$ $\frac{-b}{-2}$ $\frac{-b}{-2-c}$ $\frac{-b}{-2}$ $\frac{-b}{-2-c}$ $\frac{-b}{-2}$ $\frac{-b}{-2-c}$ $\frac{-b}{-2}$ $\frac{-b}{-2-c}$ $\frac{-b}{-2}$ $\frac{-b}{-2-c}$ $\frac{-b}{-2}$ $\frac{-b}{-2-c}$ $\frac{-c}{-2}$ $\frac{-b}{-2}$ $\frac{-b}{-2-c}$ $\frac{-b}{-2}$ $\frac{-b}{-2-c}$ $\frac{-b}{-2-c}$ $\frac{-b}{-2-c}$ $\frac{-b}{-2-c}$	Definition von Operation	onen mithilfe von set op (🛛	nd×)	=				
Erläuterung der Lösung Nach Umformung erhält man die beiden Lösungen $x_1 = -\frac{b}{2} + \sqrt{\frac{b^2}{4} - c}$ und $x_2 = -\frac{b}{2} - \sqrt{\frac{b^2}{4} - c}$ Der TI-30X Plus MultiView TM verfügt über die Option, eine bestimmte Abfolge von Operationen abzuspeichern; dabei können unterschiedliche Variablen verwendet werden. In dieser Aufgabe geht es also darum, einen Term für die Lösung einzugeben. Dies ist leider nur für <i>einen</i> Term möglich, beispielsweise die erste Lösung; für die zweite Lösung muss entsprechend das Vorzeichen geändert werden. Zunächst speichert man die Werte für die Variablen, dann führt man die gespeicherte Operation durch. $\boxed{op=-\frac{b}{2}+\sqrt{\frac{b^2}{4}-c}}$ (1) Die Lösungen der Gleichung $x^2 + 4x - 7 = 0$ sind $x_1 = -2 + \sqrt{11}$ und $x_2 = -2 - \sqrt{11}$ (2) Die Lösungen der Gleichung $x^2 - 8x - 2 = 0$ sind $x_1 = +4 + 3\sqrt{2}$ und $x_2 = +4 - 3\sqrt{2}$ $\boxed{\frac{4+b}{-7+c}} = -\frac{b}{-7} + \sqrt{\frac{b^2}{4}-c}} = \sqrt{\frac{111-2}{\sqrt{11-2}}} = \frac{-\frac{b}{-2+c}}{-\frac{7}{2}} = -\frac{b}{-2} + \sqrt{\frac{b^2}{4}-c}} = \frac{-\frac{b}{2}}{-\frac{1}{2}} + \sqrt{\frac{b^2}{4}-c}}$ (3) Die Lösungen der Gleichung $x^2 + 10x + 5 = 0$ sind $x_1 = -5 + 2\sqrt{5}$ und $x_2 = -5 - 2\sqrt{5}$ (4) Die Gleichung $x^2 - 2x + 3 = 0$ hat keine reelle Lösung. $\boxed{\frac{10+b}{5+c}} = 10\frac{10}{5} = -\frac{b}{2} + \sqrt{\frac{b^2}{4}-c}} = \sqrt{\frac{15-5}{2\sqrt{5}-5}} = \frac{-2+b}{-2+c} = -\frac{2}{-3} = 1000000000000000000000000000000000000$	Ausführen von Operati	onen mithilfe von op (2nd	D)					
Nach Umformung erhält man die beiden Lösungen $x_1 = -\frac{b}{2} + \sqrt{\frac{b^2}{4} - c}$ und $x_2 = -\frac{b}{2} - \sqrt{\frac{b^2}{4} - c}$ Der TI-30X Plus MultiView TM verfügt über die Option, eine bestimmte Abfolge von Operationen abzuspeichern; dabei können unterschiedliche Variablen verwendet werden. In dieser Aufgabe geht es also darum, einen Term für die Lösung einzugeben. Dies ist leider nur für <i>einen</i> Term möglich, beispielsweise die erste Lösung; für die zweite Lösung muss entsprechend das Vorzei- chen geändert werden. Zunächst speichert man die Werte für die Variablen, dann führt man die gespeicherte Operation durch. $p_{\text{FP}} = -\frac{b}{2} + \sqrt{\frac{b^2}{4} - c}$ (1) Die Lösungen der Gleichung x ² + 4x - 7 = 0 sind x ₁ = -2 + $\sqrt{11}$ und x ₂ = -2 - $\sqrt{11}$ (2) Die Lösungen der Gleichung x ² - 8x - 2 = 0 sind x ₁ = +4 + $3\sqrt{2}$ und x ₂ = +4 - $3\sqrt{2}$ $\frac{4+b}{-7+c}$ $\frac{-a}{-7}$ $\frac{-b}{-2} + \sqrt{\frac{b^2}{4} - c}$ $\frac{-a}{-1}$ $\frac{-b}{-2} + \sqrt{\frac{b^2}{4} - c}$ $\frac{-a}{-2}$ $\frac{-b}{-2} + \sqrt{\frac{b^2}{4} - c}$ $\frac{-2}{-3}$ $\frac{-b}{-2} + \sqrt{\frac{b^2}{4} - c}$ $\frac{-2}{-3}$								
Nach Umformung erhält man die beiden Lösungen $x_1 = -\frac{b}{2} + \sqrt{\frac{b^2}{4}} - c$ und $x_2 = -\frac{b}{2} - \sqrt{\frac{b^2}{4}} - c$ Der TI-30X Plus MultiView TM verfügt über die Option, eine bestimmte Abfolge von Operationen abzuspeichern; dabei können unterschiedliche Variablen verwendet werden. In dieser Aufgabe geht es also darum, einen Term für die Lösung einzugeben. Dies ist leider nur für <i>einen</i> Term möglich, beispielsweise die erste Lösung; für die zweite Lösung muss entsprechend das Vorzei- chen geändert werden. Zunächst speichert man die Werte für die Variablen, dann führt man die gespeicherte Operation durch. $o_{P} = -\frac{b}{2} + \sqrt{\frac{b^2}{4} - c}$ (1) Die Lösungen der Gleichung $x^2 + 4x - 7 = 0$ sind $x_1 = -2 + \sqrt{11}$ und $x_2 = -2 - \sqrt{11}$ (2) Die Lösungen der Gleichung $x^2 - 8x - 2 = 0$ sind $x_1 = +4 + 3\sqrt{2}$ und $x_2 = +4 - 3\sqrt{2}$ $4\frac{2}{-7}bc$ $-\frac{b}{2} + \sqrt{\frac{b^2}{4} - c}$ n=1 $-\frac{b}{2} + \sqrt{\frac{b^2}{4} - c}$ n=1 (3) Die Lösungen der Gleichung $x^2 + 10x + 5 = 0$ sind $x_1 = -5 + 2\sqrt{5}$ und $x_2 = -5 - 2\sqrt{5}$ (4) Die Gleichung $x^2 - 2x + 3 = 0$ hat keine reelle Lösung. 10^{0+b} 5^{0+c} 10^{0+b} 5^{0+c} 10^{0+b} 5^{0+c} 10^{0+b} 5^{0+c} 10^{0+b}	Erlauterung der Losu	ing						
Der TI-30X Plus MultiView TM verfügt über die Option, eine bestimmte Abfolge von Operationen abzuspeichern; dabei können unterschiedliche Variablen verwendet werden. In dieser Aufgabe geht es also darum, einen Term für die Lösung einzugeben. Dies ist leider nur für <i>einen</i> Term möglich, beispielsweise die erste Lösung; für die zweite Lösung muss entsprechend das Vorzei- chen geändert werden. Zunächst speichert man die Werte für die Variablen, dann führt man die gespeicherte Operation durch. (1) Die Lösungen der Gleichung x ² + 4x - 7 = 0 sind x ₁ = -2 + $\sqrt{11}$ und x ₂ = -2 - $\sqrt{11}$ (2) Die Lösungen der Gleichung x ² - 8x - 2 = 0 sind x ₁ = +4 + $3\sqrt{2}$ und x ₂ = +4 - $3\sqrt{2}$ $4 \frac{+b}{-7+c}$ $-\frac{4}{-7}$ $-\frac{b}{-2} + \sqrt{\frac{b^2}{4} - c}$ $-\frac{b}{-2} + \sqrt{\frac{b^2}{2} - c}$ $-\frac{b}{-2} + \frac{b^2$	Nach Umformung erhä	ilt man die beiden Lösunge	en $x_1 = -\frac{b}{2} + \sqrt{\frac{b^2}{4}} - c$ u	and $x_2 = -\frac{b}{2} - \sqrt{\frac{b^2}{4} - c}$				
(1) Die Lösungen der Gleichung $x^2 + 4x - 7 = 0$ sind $x_1 = -2 + \sqrt{11}$ und $x_2 = -2 - \sqrt{11}$ (2) Die Lösungen der Gleichung $x^2 - 8x - 2 = 0$ sind $x_1 = +4 + 3\sqrt{2}$ und $x_2 = +4 - 3\sqrt{2}$ $4 \rightarrow b - 7 - 7 - 7 - 7 - 9 - 9 - 9 - 9 - 9 - 9$	ber 11-30X Plus Multiv abzuspeichern; dabei I geht es also darum, ei möglich, beispielsweis chen geändert werden gespeicherte Operatio	<pre>verlugt uber die Opi können unterschiedliche V nen Term für die Lösung e e die erste Lösung; für die . Zunächst speichert man o n durch.</pre>	ariablen verwendet v inzugeben. Dies ist lo zweite Lösung muss die Werte für die Var	Abroige von Operationen verden. In dieser Aufgabe eider nur für <i>einen</i> Term e entsprechend das Vorzei- iablen, dann führt man die				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(1) Die Lösungen der ((2) Die Lösungen der (J Gleichung $x^2 + 4x - 7 = 0$ s Gleichung $x^2 - 8x - 2 = 0$ s	ind $x_1 = -2 + \sqrt{11}$ ur ind $x_1 = +4 + 3\sqrt{2}$ u	and $x_2 = -2 - \sqrt{11}$ and $x_2 = +4 - 3\sqrt{2}$				
(3) Die Lösungen der Gleichung x ² + 10x + 5 = 0 sind x ₁ = -5 + 2 $\sqrt{5}$ und x ₂ = -5 - 2 $\sqrt{5}$ (4) Die Gleichung x ² - 2x + 3 = 0 hat keine reelle Lösung. $\boxed{10 \div b}_{5 \div c} \qquad \overbrace{10}^{10}_{5 \div c} \qquad \overbrace{10}^{10}_{5 \div c} \qquad \overbrace{2\sqrt{5}-5}^{10} \qquad \overbrace{2\sqrt{5}-5}^{12} \qquad 2\sqrt$	4→b 4 -7→c -7	$\frac{1}{2} = \frac{b^2}{2} + \frac{b^2}{4} - c$ $n = 1$ $\sqrt{11} - 2$	-8÷b - -2÷c -	$\begin{bmatrix} \frac{1}{8} \\ -\frac{b}{2} + \frac{b^2}{4} - c \\ n=1 \\ 3\sqrt{2} + 4 \end{bmatrix}$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	 (3) Die Lösungen der ((4) Die Gleichung x² – 	Gleichung $x^2 + 10x + 5 = 0$ 2x + 3 = 0 hat keine reelle	sind $x_1 = -5 + 2\sqrt{5}$ u Lösung.	and $x_2 = -5 - 2\sqrt{5}$				
	10→b 10 5→c 5	$ \begin{vmatrix} \frac{b}{5} \\ -\frac{b}{2} + \sqrt{\frac{b^2}{4}} - c \\ n=1 \\ 2\sqrt{5} - 5 \end{vmatrix} $	-2→b - 3→c	2 3 DOMAIN Error				
Übungsaufgaben	Übungsaufgaben							
 Das Lösungsverfahren mithilfe der set op/op-Funktion ist nicht für beliebige ganzzahlige Koeffizienten anwendbar. Welche Einschränkung muss man beachten? Bestimme wie in der Beispiel-Aufgabe auch die Lösungen von 	 Das Lösungsverfa Koeffizienten anwe Bestimme wie in d 	ihren mithilfe der set op/o endbar. Welche Einschränl er Beispiel-Aufgabe auch (op-Funktion ist nich kung muss man bead die Lösungen von	t für beliebige ganzzahlige chten?				
(1) $x^2 + 6x - 3 = 0$ (2) $x^2 - 2x - 1 = 0$ (3) $x^2 + 4x + 3 = 0$ (4) $x^2 - 12x + 8 = 0$	(1) $x^2 + 6x - 3 = 0$	(2) $x^2 - 2x - 1 = 0$	(3) $x^2 + 4x + 3 = 0$	(4) $x^2 - 12x + 8 = 0$				
$(5) x^{2} - 4x + 2 = 0 (6) x^{2} + 4x + 5 = 0 (7) x^{2} - 20x + 5 = 0 (8) x^{2} + 16x + 3 = 0$	$(5) x^2 - 4x + 2 = 0$	$(-) x^{2} + 4x + 5 = 0$	$(7) x^2 - 20x + 5 = 0$	$(1) x^{2} + 12x + 3 = 0$ $(8) x^{2} + 16x + 3 = 0$				

Arbeitsblätter

für den TI-30X Plus MultiView[™]

Gebiet: Algebra	Einsatz ab Stufe 8 (auch zur Wiederholung geeignet)								
Umformung von Wurzeltermen									
Beispiel-Aufgabe Der TI-30X Plus MultiView [™] kar formungen von Wurzeltermen vor Notiere die fehlenden Zwischenso	nn einfache algebraische Um- rnehmen. chritte.								
Verwendete Option des TI-30X PI	Verwendete Option des TI-30X Plus MultiView [™] : Math-Print-Option (mode)								
Erläuterung der Lösung $(1+\sqrt{2})^2 = 1^2 + 2\sqrt{2} + (\sqrt{2})^2 = 1 + 2\sqrt{2} + 2 = 2\sqrt{2} + 3$ (Anwendung binomischer Formel)									
Übungsaufgaben									
Welche Umformungen wurden vo	orgenommen? Notiere die fehlenden Zwischenschritte.								
√ <u>27</u> 3√3									
<u>√50</u> -√18 2√2									
(1+√2)*(3-√2) 2√2+1									
(√7-√5) ² -2√35+12									
2 3-15 2									
$ \begin{array}{c} $									
<u>3-√7</u> <u>5√7-13</u> 2+√7 3									
<u>√7-√3</u> <u>-√21+5</u> √7+√3 2									

Heinz Klaus Strick

Gebiet: Funktionen	Einsatz ab Stufe 9						
Bestimmen der Verdopplungszeit bei Wachstumsprozessen							
Beispiel-Aufgabe Ein Kapital von 1000 € werde mit einen jährlichen Zinssatz ver zum Kapital hinzugefügt. Nach wie vielen Jahren hat sich das Der Zinssatz p beträgt (1) 1 % (2) 2 % (3) 2,5 % (4) 3 %	zinst; die Zinsen werden jeweils Kapital verdoppelt? (5) 3,6 % (6) 4 % (7) 4,8 %						
Welcher Zusammenhang zwischen dem Zinssatz p und der Ve	erdopplungszeit d fällt auf?						
Verwendete Optionen des TI-30X Plus MultiView TM : Bestimmen einer Wertetabelle einer Funktion (table)							
Erläuterung der Lösung							
Zu lösen ist jeweils die Gleichung: 2000 = $1000 \cdot q^n$, wobei q	= 1 + p (p Zinssatz).						
Dazu stellt man jeweils die Wertetabellen der Funktion f mit f(x nach demjenigen Wert von x, bei dem der Funktionswert von 2	x) = 1000 · q ^x auf und sucht dort 2000 überschritten wird, z. B.						
(1) $f(x) = 1000 \cdot 1,01^{x}$ ($\geq 2000 \text{ für } x \geq 70$) (2) $f(x) = 1000$	0 · 1,02 [×] (≥ 2000 für x ≥ 36)						
$f(x)=1000*1.01^{x} \begin{bmatrix} x & f(x) \\ f(x)=1000*1.01^{x} & f(x) \\ g(x)=1000*1 \\ g(x)=100*1 \\ g(x)=10*1 $	$\begin{array}{c} & & & & & & \\ 1.02^{\%} & & & & & f(\%) \\ 35 & & & & f(\%) \\ \hline & & & & & 2039.889553 \\ \hline & & & & & & 2039.887344 \\ \hline & & & & & & & \\ 37 & & & & & & & \\ \hline & & & & & & & & \\ 37 & & & & & & & & \\ \hline & & & & & & & & \\ & & & &$						
(3) $f(x) = 1000 \cdot 1,024^{x} (\ge 2000 \text{ für } x \ge 30)$ (4) $f(x) = 1000$	· 1,03 ^x (≥ 2000 für x ≥ 24)						
$f(x)=1000*1.024^{\%} \begin{bmatrix} x & f(x) \\ 28 & 1942.668892 \\ 29 & 1989.292946 \\ 2037.035976 \\ x=30 \end{bmatrix} f(x)=1000*$	$\begin{array}{c c} & & & & & & \\ \hline & & & & & \\ 1.03^{\%} & & & & \\ \hline & & & & \\ 23 & & & & \\ \hline & & & & \\ 25 & & & & \\ \hline & & & & \\ \hline & & & & \\ 25 & & & & \\ \hline & & & & \\ \hline & & & & \\ 25 & & & & \\ \hline & & & & \\ \hline & & & & \\ 25 & & & & \\ \hline & & & & \\ \hline & & & & \\ 25 & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$						
(5) $f(x) = 1000 \cdot 1,036^{x} (\ge 2000 \text{ für } x \ge 20)$ (6) $f(x) = 1000$	· 1,04 ^x (≥ 2000 für x ≥ 18)						
(7) f(x) = 1000 · 1,048 ^x (≥ 2000 für x ≥ 15)							
Vergleicht man die Ergebnisse, dann entdeckt man die Faustre (manchmal findet man in Büchern oder Internetquellen auch di	egel: p · d ≈ 72 ie Angabe p · d ≈ 70).						
Übungsaufgaben							
 Untersuche die Gültigkeit der Regel für andere geeignete Suche auch eine Regel für die Verdreifachung eines Kapita 	Teiler von 70 bzw. 72. als.						
Zusatz							
Der TI-Schulrechner verfügt über eine Option, zu gegebenen V Funktion zu finden, deren Graph möglichst gut zu diesen Paar	Vertepaaren eine geeignete en "passt".						
Unter den Optionen von stat-reg (2nd data) findet man die Optiene Potenzfunktion). Wieso wird hierdurch die Merkregel best	ion <i>Pwr-Reg</i> (Regression durch ätigt?						
Image: system Image: s	L3 † L2 L3 1 L2 L3 1 CALC 34r2=0.999865013						

Da der Graph achsensymmetrisch zur y-Achse ist, genügt es, nur die rechte Hälfte des Rechtecks zu betrachten und dann zu verdoppeln. Der Flächeninhalt A(x) eines Rechtecks, das die Bedingungen hinsichtlich der Lage der Eckpunkte erfüllt, berechnet sich aus der Breite x und der Höhe f(x), d. h., es gilt

 $A(x) = 2 \cdot x \cdot f(x) = 2 \cdot x \cdot (4 - x^2) = 8x - 2x^3$

Diesen Funktionsterm gibt man in den Editor der \underline{table} –Funktion ein. Zunächst wählt man als Schrittweite für die Wertetabelle *Step* = 0.1. Beim Scrollen findet man heraus, dass zunächst die Funktionswerte von A(x) steigen und dann wieder abnehmen. Zwischenbilanz: Das Maximum liegt im Intervall 1.1 < x < 1.3.

Um die Stelle des Maximums weiter einzuschränken, wird dann die Schrittweite auf *Step* = 0.01 verkleinert. Jetzt kann man die Stelle des Maximums auf das Intervall 1.14 < x < 1.16 einschränken. In weiteren Schritten kommt man auf 1.154 < x < 1.156 und 1.1546 < x < 1.1548.

Als Lösung kann man ungefähr angeben: Wenn x \approx 1.1547 gewählt wird, hat das Rechteck einen maximalen Flächeninhalt von A(1.1547) \approx 6,1584 FE.

Um die y-Koordinate des Punkts auf dem Graphen zu bestimmen, muss man noch $x \approx 1.1547$ in die Funktionsgleichung $f(x) = 4 - x^2$ einsetzen: $f(1.1547) \approx 2.6666$. Dies kann direkt oder mithilfe der Option expr-eval (2nd table) erfolgen: Dazu gibt man unter expr-eval den Funktionsterm von f(x) ein, dann für x den gewünschten x-Wert.

Übungsaufgabe

Ermitteln Sie analog zur Beispielaufgabe das Rechteck mit maximalem Flächeninhalt, das man zum Graphen der achsensymmetrischen Funktion f mit f(x) = cos(x) einzeichnen kann.

Beachten Sie, dass der *Modus* des TI-Schulrechners auf RAD eingestellt ist.

Wenn man die Schrittweite 1 wählt, findet man nur *einen* Vorzeichenwechsel – die Funktion scheint nur eine reelle Nullstelle zu haben. Warum ist eine genauere Untersuchung des Graphenverlaufs notwendig?

Gebiet: Analysis		Einsatz ab Stufe 10			
Einführung in die Di	fferenzialrechnung: L	Intersuchung von	Sekantensteigungen		
Beispiel-Aufgabe	$n f mit f(x) = x^2$	\$			
Untersuchen Sie die Ste durch den festen Punkt variable Punkte Q, die a liegen und auf P zulaufe	eigung der Sekanten P (1 1) und durch auf dem Graphen von f en.	2	n(c)=r ² 2(s)=2 s-1 1 1.5 2		
Verwendete Option des	TI-30X Plus MultiView [™]	۸ <u>.</u>	DEG		
Umgang mit Listenform	eln im d ata)-Menü	CLEAR =0 3100=] DE Add∕Edit Frmla 2:Clear L1 Frmla 3↓Clear L2 Frmla			
Erläuterung der Lösur	ng				
Die zu untersuchende F x-Werte des sich auf P Hier wurden gewählt: x "gespiegelten" Werte 1,	unktion definieren wir m zu bewegenden Punktes = 0,5 ; 0,9 ; 0,95 ; 0,99 ; 0001 ; 1,0005 ; 1,001 ;	ithilfe von "Edit functi Q tragen wir in Liste 0,995 ; 0,999 ; ; 0, ; 1,5.	on" im table)-Menü. Die L1 im data)-Menü ein. 9999 und dann die		
⊫ 1:f(MEEdit function	$f(x)=x^2$	u 9 19™5 0.9 0.95 0.95 0.99 1.1(1)=0.5			
Die Steigung m der Sek $m = \frac{f(x_Q) - f(1)}{x_Q - 1}$. Auf der	anten durch die Punkte m TI-30X Plus MultiView	P und Q berechnet m [™] realisieren wir dies	an mithilfe von s mithilfe von Listenformeln		
wie folgt: Drückt man ei Mal drückt, erscheint da und Löschen von Forme Eingabe einer Berechnu Option 1 des table-Menu data -Taste erhalten. Na	nmal auf die data -Taste s is Menü zur Bearbeitung eln). Wir markieren ein F ungsvorschrift für die List üs "f(") sowie das Symbo ch Drücken der enter -Tas	sind die Listen sichtb der Listen (Löschen eld in Liste L2; jetzt e te L2. Bei der Eingab ol "L1", das wir durch ste werden die Sekar	ar, wenn man ein zweites von Listen und Eingabe rwartet der Rechner die e der Formel verwenden wir erneutes Drücken der itensteigungen berechnet.		
^{®®} EEIIN FORMULA IEClear L1 2:Clear L2 3↓Clear L3	[™] CLEAR 20130UUE) MEAdd∕Edit Frmla 2:Clear L1 Frmla 3↓Clear L2 Frmla	0 9 8 8000 0.5 0.9 0.95 0.99 L2(1)=	■ B B B B B B B B B B B B B B B B B B B		
B B)000 0.9 0.95 0.95 0.95 0.95 0.95	B B	8 8 8*** 0.999 1.999 0.9995 1.9995 0.9999 1.9999 1.0001 *********************************	B B B™ 1.0001 270006 1.0005 2.0005 1.001 2.001 1.005 2.005 ■20000 2.0001		
Übungsaufgaben					
Bestimmen Sie die Stei	gung der Sekanten für ei	ine Folge von Punkte	n Q, die auf P zulaufen,		
a) für f(x) = x ² und	I P(2 4) [P(0,5 0,2	5)]			
b) für f(x) = x³ und	I P(1 1) [P(2 8), P	(0,5 0,125)]			
c) für f(x) = \sqrt{x} unc	P(1 1) [P(4 2). P	(9 3)]			

- Monotonie: Der Graph von f ist für x < -2.527 streng monoton steigend, für -2.528 < x < ≻ 0.527 streng monoton fallend, für x > 0.528 streng monoton steigend.
- \triangleright Krümmung: Der Graph von f ist für x < -1 rechtsgekrümmt, für x > -1 linksgekrümmt.

Arbeitsblätter

für den TI-30X Plus MultiView[™]

Heinz Klaus Strick

Gebiet: Analysis

Einsatz ab Stufe 11

Heinz Klaus Strick

Einführung der Integralrechnung – Bestimmen von Ober- und Untersummen (2)

Beispiel-Aufgabe

Gegeben ist eine Funktion f, die auf dem Intervall [0; b] streng monoton steigend ist, beispielsweise $f(x) = x^2$ und b = 1 (siehe Abbildung rechts).

Die Maßzahl der Fläche des Flächenstücks zwischen Graph und x-Achse soll für das Intervall bestimmt werden.

Dazu betrachtet man Rechtecke mit der Breite Δx , deren Höhe bestimmt wird durch den Funktionswert von f am rechten Eckpunkt des jeweiligen Teilintervalls und bestimmt deren Gesamtgröße.

(2) f(x) = sin(x) über dem Intervall [0 : $\pi/2$]

1:4

FUNCTION TABLE

MBEdit function

Bestimmen Sie die Flächenmaße für eine Unterteilung des Intervalls in n = 10, 100, 1000 Teile

Σ ×≡∷

für (1) $f(x) = e^x - 1$ über dem Intervall [0; 1]

Verwendete Option des TI-30X Plus MultiViewTM:

Summen-Funktion des Math-Menüs

Eingabe eines Funktionsterms (table)

Erläuterung der Lösung

Da der Graph der Funktion f streng monoton steigend auf dem Intervall ist, ergibt sich die Gesamtfläche der Treppenfigur (Obersumme O_n) aus dem Produkt der Funktionswerte am rechten

Eckpunkt des Teilintervalls und der Rechteckbreite $\Delta x = b/n$: $O_n = \sum_{k=1}^n \frac{b}{n} \cdot f\left(\frac{b \cdot k}{n}\right) = \frac{b}{n} \cdot \sum_{k=1}^n f\left(\frac{b \cdot k}{n}\right)$

Zunächst geben wir den Funktionsterm f(x) über das \boxed{table} -Menü ein; den Summenterm bestimmen wir mithilfe der Summen-Funktion des Math-Menüs: Dazu füllt man den kleinsten und größten Wert für k (auf dem Rechner heißen alle Variablen x) am Summenzeichen \sum sowie den Term $f(x_k)$, den man über die Option 1 des \boxed{table} -Befehls aktiviert. Die Anzahl der Unterteilungen kann erhöht werden, indem man zurückscrollt und korrigiert. Für Teilaufgabe (2) muss nur der Funktionsterm im \boxed{table} -Menü ausgetauscht sowie b korrigiert werden (\boxed{mode} : RAD beachten).

f(x)=e ^x −1∎	$ \frac{\frac{1}{10} \sum_{\substack{x=1\\ x=1}}^{10} \left(f\left(\frac{x}{10}\right) \right) }{0.805627583} $	$\frac{\frac{1}{100}\sum_{\substack{x=1\\x=1}}^{100} \left(f\left(\frac{x}{100}\right) \right) \\ 0.726887557$	$\frac{\frac{1}{1000}\sum_{\substack{x=1\\y=1}}^{1000} \left(f\left(\frac{x}{100}\right)\right)}{0.719141113}$
f(x)=sin(x)	$\frac{\frac{\pi}{20}\sum_{x=1}^{10} \left(f\left(\frac{\pi x}{20}\right) \right)}{1.076482803}$	$\frac{\frac{\pi}{200} \sum_{x=1}^{100} \left(f\left(\frac{\pi x}{200}\right) \right)}{1.00783342}$	$\frac{\pi}{2000} \sum_{\substack{x=1\\x=1}}^{1000} (f(\frac{\pi}{200}) 1.000785192)$

Übungsaufgaben

Bestimmen Sie die Obersummen O_{10}, O_{100}, O_{1000} für

(1) $f(x) = sin^2(x)$ auf dem Intervall [0; $\pi/2$]

(2)
$$f(x) = \frac{x-1}{x}$$
 auf dem Intervall [1;2]

© 2015 Texas Instruments

Gebiet: Analysis

Heinz Klaus Strick

DEG

Integralrechnung: Bestimmen von Flächen zwischen Graph und x-Achse (1)

Beispiel-Aufgabe

Gegeben ist die ganzrationale Funktion f mit $f(x) = x^3 - 2x^2 - 5x + 6$.

Die Maßzahl der Fläche der beiden Flächenstücke, die von Graph und x-Achse eingeschlossen werden, soll bestimmt werden.

Hinweis: Die Nullstellen von f(x) sind ganzzahlig.

Verwendete Optionen des TI-30X Plus MultiView[™]:

Speichern eines Funktionsterms

Summenfunktion des Math-Menüs

x≝∷⊂∷⊃

f(x)+x³-2·x²-5·x+6

Erläuterung der Lösung

Mithilfe der Wertetabelle der Funktion findet man die drei ganzzahligen Nullstellen -2; +1 und +3.

Das erste Flächenstück liegt oberhalb der x-Achse und erstreckt sich über ein Intervall der Breite 3, das zweite liegt unterhalb der x-Achse und erstreckt sich über ein Intervall der Breite 2.

Näherungsweise können die Flächenstücke durch Trapeze ausgeschöpft bzw. überdeckt werden. Wählt man als Breite der Trapeze 0.01, dann werden beim links liegenden Flächenstück 300 Trapeze betrachtet, beim rechts liegenden 200. Die schrägen Seiten der Trapeze bilden einen Streckenzug längs des Graphen.

Der Flächeninhalt *eines* Trapezes mit linker Ecke a: $\frac{1}{2} \cdot [f(a) + f(a+0.01)] \cdot 0,01$ = (Mittelwert der Funktionswerte an der Stelle a und an der Stelle a+0,01) · Breite

Für x = -2 ergibt sich für die Summe der Flächeninhalte der 300 Trapeze \approx Flächeninhalt des

Flächenstücks links:
$$\sum_{k=0}^{299} 0,005 \cdot (f(-2+0,01k) + f(-2+0,01k+0,01)) \approx 15,75$$
 FE.

Für x = +1 ergibt sich für die Summe der Flächeninhalte der 200 Trapeze \approx Flächeninhalt des

Flächenstücks rechts:
$$(-1) \cdot \sum_{k=0}^{\infty} 0,005 \cdot (f(1+0,01k) + f(1+0,01k+0,01)) \approx 5,33$$
 FE

Da der Graph im Intervall rechts unterhalb der x-Achse verläuft, muss der Term mit (-1) multipliziert werden.

Übungsaufgaben

Bestimmen Sie die ganzzahligen Nullstellen der ganzrationalen Funktion f. Fertigen Sie eine Skizze des Graphen an, um vorherzusagen, welche der einzelnen Flächenstücke unterhalb bzw. oberhalb der x-Achse liegen. Bestimmen Sie näherungsweise die Maßzahlen der Flächenstücke, die der Graph von f und die x-Achse einschließen.

(1)
$$f(x) = x^3 + 3x^2 - x - 3$$
 (2) $f(x) = x^4 + 2x^3 - 9x^2 - 2x + 8$ (3) $f(x) = x^4 - 3x^3 - 3x^2 + 7x + 6$

DEG

Gebiet: Analysis

Einsatz ab Stufe 11

Integralrechnung: Bestimmen von Flächen zwischen Graph und x-Achse (2)

Beispiel-Aufgabe

Gegeben ist die Funktion f mit

$$f(x) = (x^2 - 5x + 4) \cdot e^{-x}$$

Gesucht sind die Maßzahlen der beiden Flächenstücke, die von Graph und x-Achse eingeschlossen werden.

x≡∷ x≡∷

(33)

Verwendete Optionen des TI-30X Plus MultiViewTM:

Speichern eines Funktionsterms Summenfunktion des Math-Menüs

Erläuterung der Lösung

Über die table-Option gibt man den Funktionsterm ein. Der Rechner erzeugt eine Wertetabelle, die für das Anfertigen einer Skizze des Graphen verwendet werden kann.

FUNCTION TABLE

BEdit function

Auf dem Intervall [1; 4] werden 300 Trapeze der Breite 0,01 betrachtet.

$$(-1) \cdot \sum_{k=0}^{299} 0,005 \cdot (f(1+0,01k) + f(1+0,01k+0,01)) \approx 0,459 \text{ FE.}$$

Für das rechts liegende Flächenstück, das bis ins Unendliche reicht, werden zunächst 1000 Trapeze der Breite 0,01 für das Intervall [4; 14] betrachtet:

$$\sum_{k=0}^{999} 0,005 \cdot (f(4+0,01k) + f(4+0,01k+0,01)) \approx 0,09145$$

dann jeweils 1000 Trapeze für das Intervall [14 ; 24] bzw. [24 ; 34]:

$$\sum_{k=0}^{999} 0,005 \cdot (f(14+0,01k) + f(14+0,01k+0,01)) \approx 0,00013$$

$$\sum_{k=0}^{999} 0,005 \cdot (f(24+0,01k) + f(24+0,01k+0,01)) \approx 0,00000019$$

Da der Zuwachs minimal ist, kann abschätzen, dass der Graph so dicht an der x-Achse liegt, dass das Flächenstück für den Gesamt-Flächeninhalt keine Rolle spielt, d. h. das Flächenstück mit unendlich großem Umfang hat einen endlich großen Flächeninhalt von ca. 0,0916 FE.

Übungsaufgaben

Skizzieren Sie den Graphen der Funktion f und bestimmen Sie die Maßzahl der Flächenstücke, die der Graph von f und die x-Achse einschließen.

(1)
$$f(x) = (x^2 - 1) \cdot e^{-x}$$
 (2) $f(x) = (x^2 - 1) \cdot x \cdot e^{-x}$ (3) $f(x) = (x^2 - 1) \cdot (x^2 - 4) \cdot e^{-x}$

Heinz Klaus Strick

DEG

Einsatz ab Stufe 11

FUNCTION THBLE

🗷 Edit function

Untersuchung des möglichen Schnittwinkels einer Geraden mit einer Geradenschar

Beispiel-Aufgabe

Gegeben sind die Parameterdarstellungen einer Geraden g sowie eine Geradenschar h_t , die mit der Geraden einen Punkt gemeinsam haben. Welche Winkel können zwischen g und h_t

1

t

auftreten? $g: \vec{x} = \begin{pmatrix} -1\\2\\5 \end{pmatrix} + r \cdot \begin{pmatrix} 2\\2\\1 \end{pmatrix}$; $h_t: \vec{x} = \begin{pmatrix} -1\\2\\5 \end{pmatrix} + s \cdot \vec{x}$

Verwendete Optionen des TI-30X Plus MultiView[™]:

Bestimmen einer Wertetabelle einer Funktion (table)

Erläuterung der Lösung

Für den Schnittwinkel α zwischen zwei sich schneidenden Geraden, d. h. zwischen den beiden

Richtungsvektoren	$ec{u}$ und $ec{v}$, gilt:	$\cos(\alpha) = \frac{\vec{u} * \vec{v}}{ \vec{u} \cdot \vec{v} }$, also:	$\alpha = \cos^{-1}\left(\frac{\vec{\boldsymbol{u}} \ast \vec{\boldsymbol{v}}}{ \vec{\boldsymbol{u}} \cdot \vec{\boldsymbol{v}} }\right).$

Hier ist: $\vec{u} * \vec{v} = 2 \cdot 3 + 2 \cdot 1 + 1 \cdot t = 6 + 2 + t = 8 + t$ und $|\vec{u}| \cdot |\vec{v}| = \sqrt{2^2 + 2^2 + 1^2} \cdot \sqrt{3^2 + 1^2 + t^2} = 3 \cdot \sqrt{10 + t^2}$

Die Untersuchung der möglichen Schnittwinkel lässt sich also auf die Untersuchung einer

Funktion f mit $f(t) = \cos^{-1}\left(\frac{8+t}{3\cdot\sqrt{10+t^2}}\right)$ zurückführen (Mode: DEG).

Mithilfe der table -Option kann zunächst grob, dann in kleinen Schritten der Verlauf des Graphen untersucht werden. Dabei nutzt man zunächst die Option x = ? im TABLE SETUP, um gezielt einzelne x-Werte einzugeben, dann die Option "Auto", um mit einer kleineren Schrittweite das Intervall zwischen -8 (90°) und +6 näher zu untersuchen.

Man findet heraus, dass die Größe des Schnittwinkels α zwischen ca. 109,47° (für t = -10⁶) und ca. 24,94° (für t \approx 1,25) liegen kann. (Hinweis: $\alpha \approx$ 70,53° = 180° – 109,47° für t = +10⁶)

Gebiet: Analytische Geometri	Einsatz ab Stufe 11							
Ermittlung des Abstands eines Punktes von einer Geraden								
Beispiel-Aufgabe Gegeben ist der Punkt P (1 2 3) durch eine Parameterdarstellung. Welchen Abstand hat der Punkt P	und die Gerade von der Gerade	e g, die gegeben i en g?	st $g: \vec{x} = \begin{pmatrix} 2\\ 3\\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} -1\\ 1\\ 2 \end{pmatrix}$					
Verwendete Optionen des TI-30X Bestimmen einer Wertetabelle eine	^M :	I <mark>:UX(2000)XXX(1:34=</mark> 1:f(28 Edit function						
Erläuterung der Lösung								
Wir bilden den Differenzvektor $\vec{p} - \vec{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -1+r \\ -1-r \\ 2-2r \end{pmatrix}$ und untersuchen, für welche								
Einsetzung des Parameters r dieser Vektor einen moglichst kleinen Betrag hat. Mithilfe des TI-Schulrechners kann dies realisiert werden, indem eine Funktion f definiert wird, die in Abhängigkeit vom Parameter x (statt r) den Betrag des Differenzvektors berechnet:								
$f(x) = (-1+x)^2 + (-1-x)^2 + (2-x)^2 + (2-$	$(-2x)^2$ (der Terr	m muss nicht umg	jeformt werden)					
Mithilfe der Table-Option kann zunächst grob, dann in kleinen Schritten der Verlauf des Graphen untersucht werden. Dabei kann man zunächst die Option "x = ?" im TABLE SETUP nutzen, um gezielt einzelne x-Werte einzugeben, dann die Option "Auto", um mit einer kleineren Schrittweite ein geeignet erscheinendes Intervall näher zu untersuchen. Man findet heraus, dass der Abstand am kleinsten ist, wenn der Parameter den Wert r ≈ 0.667								
Durch Einsetzen von r ≈ 0.667 in d zugehörigen Fußpunkt des Lots F zutrifft.	ie Parameterda (1.333 3.667	rstellung der Gera 2.334), für den di	aden erhält man den eser minimale Abstand					
$f(\chi) = \sqrt{(-1+\chi)^2 + (1)} \begin{bmatrix} \chi \\ -\frac{\chi}{-\frac{1}{3}} \\ \frac{-3}{\sqrt{2}} \end{bmatrix}$	۵۰۶ ۲(۱) ۲ ۱.5758369 ۱.6515139	^{№6} 2 6.7823299 1 4.4721359 2.4494897 =0	1 2 255 3.741657387 243 6 7=3 7					
$\begin{array}{c ccccc} & & & & & & & & \\ & & & f(x) & & & & \\ 0.6 & & 1.833030278 & & & & \\ 0.8 & & 1.827566688 & & & & & \\ 0.8 & & 1.854723699 & & & & & \\ \hline 0.68 & & 1 & & \\ 1=0.7 & & & & & & \\ \hline \end{array}$	f(1) s25814887 s25760116 s26033954 0, 7:	% f(%) % f(%) % 666 % 1.8257429 % 1.8257420 % 1.8257420 % 1.8257420 % 668 % 1.82574420 % 668 % 1.82574420	589 941 78					
Übungsaufgaben								
Bestimmen Sie den Abstand des F	Punktes P(1 -1	1) von den Ger	aden g_1 , g_2 , g_3 :					
(1) $g_1: \vec{x} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$ (2)	$\boldsymbol{g}_2: \boldsymbol{\bar{x}} = \begin{pmatrix} \boldsymbol{1} \\ -\boldsymbol{2} \\ -\boldsymbol{1} \end{pmatrix} +$	$r \cdot \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix} $ (3)	$\boldsymbol{g}_3: \boldsymbol{\bar{x}} = \begin{pmatrix} \boldsymbol{3} \\ -\boldsymbol{2} \\ \boldsymbol{1} \end{pmatrix} + \boldsymbol{r} \cdot \begin{pmatrix} -\boldsymbol{2} \\ \boldsymbol{1} \\ \boldsymbol{0} \end{pmatrix}$					

Arbeitsblätter

für den TI-30X Plus MultiViewTM

Gebiet: Beschreibende Statistik						I	Einsatz a	b Stufe 8	8	
Regres	ssionsrech	nnung: l	Modellie	eren du	rch eine	lineare	Funkt	ion		
Beispiel-Aufgabe Nach Angaben der Deutschen Bundesbank nahm die Anzahl der Bankfilialen in Deutschland in den letzten Jahren kontinuierlich ab. Geben Sie aufgrund der Entwicklung eine Prog- nose an für die Anzahl der Bankfilialen im Jahr 2012. (Hinweis: Wählen Sie statt der tatsächlichen Jahreszahlen				80000- 60000- 1997 80000- 20000-	• .	••.	• •			
die Zahle	n 0, 2, 4,, 1	4.)	achiichen	Jameszam		0 1994 1	996 1998 20	00 2002 2004 20 jahr	006 2008 2010	2012
	Jahr	1995	1997	1999	2001	2003	2005	2007	2009	
	Anzahl	67930	63186	58546	54089	47244	44100	39833	39441	
Verwen LinReg	Verwendete Option des TI-30X Plus MultiView TM : LinReg (2nd data) STATERIALE DISTR 372-Var Stats SH LinReg ax+b 54QuadraticReg									
Die Daten werden nach Drücken der data-Taste in die beiden Listen L1 und L2 eingegeben; dann wird über das STAT-REG-Menü die Option LinReg aktiviert, in der bestätigt wird, dass die Daten in den Listen L1 und L2 stehen und mit der Häufigkeit 1 (ONE) berücksichtigt. Außerdem wird die Option aktiviert, dass der berechnete lineare Funktionsterm unter f(x) gespeichert wird (RegEQ \rightarrow f(x)); dies geschieht, damit man anschließend über die Wertetabelle die Prognose- werte für kommende Jahre ablesen kann. Die am besten zu den Daten passende lineare Funkti- on hat die Funktionsgleichung f(x) \approx -2181 x + 67062. Die gute Qualität der Anpassung lässt sich am Bestimmtheitsmaß r ² ablesen, das nahe bei 1 liegt.										
0 10 12 14 <u>L2(9)</u> =	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
Um die Prognose vornehmen zu können, wird über die \underline{table} -Taste die Wertetabelle aufgerufen. Da der Funktionsterm in der Form f(x) = ax + b gespeichert wurde, muss er nicht eingegeben werden. Für das Jahr 2013 ergibt sich im linearen Modell die Prognose f(18) \approx 27808.										
$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$										
Übungs	saufgabe									
Der Bie leicht rü	Der Bierabsatz in Deutschland (gemessen in Millionen Hektoliter) war in den letzten Jahren leicht rückläufig. Welche Prognose (gemäß linearem Modell) ergibt sich für das Jahr 2012?									
Lineare	Funktion: f	(x) =								
	Jahr	1994	1998	2002	2006	2008	2	012		
	Volumen	115,7	109,4	107,8	106,8	102,9			← Prog	nose

Heinz Klaus Strick

Gebiet: Beschreibende Statistik

Einsatz ab Stufe 9

Regressionsrechnung: Modellieren durch eine quadratische Funktion

Beispiel-Aufgabe

Ein Basketballspieler wird beim Freiwurf-Training fotografiert. Legt man ein Koordinatensystem über die Bilder, dann stellt man fest: Der Ball wird in A ($0 \mid 225$) abgeworfen; die Mitte des Korbes ist in B ($430 \mid 305$). Aus den Fotos sind ungefähr die Punkte C ($100 \mid 310$), D ($200 \mid 395$), E ($300 \mid 375$) zu entnehmen (Angaben in cm).

Bestimmen Sie eine quadratische Funktion, durch welche die Wurfparabel am besten beschrieben werden kann.

Verwendete Option des TI-30X Plus MultiView[™]:

QuadraticReg des STAT-Reg-Menüs (2nd data)

Erläuterung der Lösung

Die Daten werden nach Drücken der data -Taste in die beiden Listen L1 und L2 eingegeben; dann wird über das STAT-REG-Menü die Option QuadraticReg aktiviert, in der bestätigt wird, dass die Daten in den Listen L1 und L2 stehen und mit der Häufigkeit 1 (ONE) berücksichtigt. Außerdem wird die Option aktiviert, dass der berechnete quadratische Funktionsterm unter f(x) gespeichert wird (RegEQ \rightarrow f(x)); dies geschieht, damit man auch Zwischenwerte ablesen kann. Die am besten zu den Daten passende quadratische Funktion hat die Funktionsgleichung f(x) \approx -0,0026x² + 1,316 x + 219,9. Die gute Qualität der Anpassung lässt sich am Bestimmtheitsmaß R² ablesen, das nahe bei 1 liegt.

Um weitere Punkte der Flugkurve ablesen zu können, wird über die Table - Taste die Wertetabelle aufgerufen. Da der Funktionsterm in der Form $f(x) = ax^2 + bx + c$ gespeichert wurde, muss er nicht eingegeben werden.

DEG	DEG	DEG	DEG
1: f(1: f(2: Edit function	f(n)=an ² +bn+c	16138==534005 † Start=0 Step=50 160000 X = ? CALC	X f(X) 219.8998283 279.2102236 100 325.512329 X=0 325.512329

Übungsaufgabe

1. Durch drei Punkte ist eine quadratische Parabel eindeutig bestimmt. Bestimmen Sie die Gleichung mithilfe einer quadratischen Regression.

(1) P₁ (-2 | 5); P₂ (0 | -1); P₃ (3 | 8)

(2) P₁ (-2 |-3); P₂ (1 | 1); P₃ (5 | 0)

2. Ein Ball wird aus einer Höhe von 8 m über der Straßenebene waagerecht aus einem Fenster geworfen. Er trifft in 10 m Entfernung von der Hauswand auf dem Boden auf.

Bestimmen Sie die Gleichung der Wurfparabel mithilfe einer quadratischen Regression.

Arbeitsblätter

für den TI-30X Plus MultiView[™]

Heinz Klaus Strick

Gebiet: Beschreibende Statistik Einsatz ab Stufe 10 Regressionsrechnung: Optimierung einer exponentiellen Modellierung **Beispiel-Aufgabe** 80000 Nach Angaben der Deutschen Bundesbank nahm die Anzahl der Bankfilialen in Deutschland in den 60000 letzten Jahren kontinuierlich ab. Suchen Sie eine Modellierung, die am besten zur Entwicklung passt und geben Sie eine Prognose 20000 an für die Anzahl der Bankfilialen im Jahr 2012. (Hinweis: Wählen Sie statt der tatsächlichen Jahreszahlen 1994 2002 2004 2006 2008 2010 2012 die Zahlen 0, 2, 4, ..., 14.) 1996 1998 2000 Jahr 1995 1997 1999 2001 2003 2005 2007 2009 Anzahl 67930 63186 58546 54089 47244 44100 39833 39441 Verwendete Option des TI-30X Plus MultiView[™]: HILLER DISTR STAT-REG: ExpReg (2nd data) ↑LnRe9 a+bln% ⊫PwrRe9 a%^b ab^ī KBEXPRe9 **Erläuterung der Lösung** (Modellieren mit einer linearen Funktion wird als bekannt vorausgesetzt) Die Anpassung durch eine exponentielle Funktion mit $y = 68309 \cdot b^{0.9586}$ hat das Bestimmtheitsmaß $r^2 \approx 0.9846$ und ermöglicht die Prognose f(18) ≈ 31930 . **FEI DEG** 10 12 14 o^%:L1,L2,1 x 16 18a=68308.6565 2:b=0.9586300788 20 3↓r²=0.984572808 %=18 L2(9)= Aus der Sachsituation ist nicht zu vermuten, dass die Anzahl der Bankfilialen gegen null geht (wie bei einer Exponentialfunktion). Vielmehr ist anzunehmen, dass die Anzahl zwar weiter abnimmt, aber nicht unter einen Sockelbetrag fallen wird, d. h. optimal scheint eine Modellierung mithilfe einer Exponentialfunktion vom Typ $f(x) = c + a \cdot b^x$. Gesucht ist dasjenige c, das optimal zu den gegebenen Daten passt. In Liste L3 werden die um c verminderten Daten gespeichert. Für c = 20000 ergibt sich für 2013 die Prognose f(18) \approx 13901 (+20000) mit r² \approx 0,9843 und für c = 30000 erhalten wir f(18) \approx 5847 (+30000) – wobei r² \approx 0,9785 schlechter ist als oben. Die Variation von c ergibt: c = 11000 ist optimal mit $r^2 \approx 0.9849$ und f(18) = 21820 (+11000). BDEG 10 12 14 24100 19833 19441 XDATA: Ydata: ab^x:L1, A LŽ 📑 <u>18</u>a=49 FRQ: 0213 L1 Re9EQ7f(1): ġ 319476525 984270288 NÕ Nies :b=0 2:6=0.9 3↓r2=0. L3(9)= 9=ab^11 CALC 1=18 BDEG DEG DEG 10 12 14 80^%+1;1,13;1 11a=57748.1101 2:b=0.94736505 3↓r²=0.9848602 x 18 20 5054L3(9)= 984860 1=18 Übungsaufgabe Berechnen Sie für die o. a. Modellierung die Qualität der Anpassung für unterschiedliche a) Werte von c.

b) Begründen Sie, warum andere Modellierungen nicht sachgerecht wären.

Heinz Klaus Strick

Gebiet: Stochastik

Einsatz ab Stufe 9

DEG

6

<u>24 nCr 6*25 nCn</u>

49 nCr

Binomialkoeffizienten – Gewinnwahrscheinlichkeiten beim Lottospiel 6 aus 49

Beispiel-Aufgabe

Bestimmen Sie die Verteilung der Zufallsgröße X: Anzahl der geraden Glückszahlen beim Lottospiel ,6 aus 49'

Verwendete Option des TI-30X Plus MultiView[™]:

Binomialkoffizienten ($[!_nPr]^{ncr}$)

table - Funktion

Erläuterung der Lösung

Da es 24 gerade und 25 ungerade Zahlen in der Menge {1, 2, ..., 49} gibt, berechnen sich die

Wahrscheinlichkeiten mithilfe des Terms

$$P(X=k) = \frac{\binom{24}{k} \cdot \binom{25}{6-k}}{\binom{49}{6}}$$

Dieser Term kann als Funktionsterm f(x) mithilfe der table -Funktion eingegeben werden (Achtung:
☐ verwenden und 6-k als (6-x) in Klammern setzen). Die in der Wertetabelle auftretenden Brüche können durch Drücken der •= -Taste als Dezimalzahlen angezeigt werden (dies ist im Display nur unten sichtbar).

f(%)=∎ Enter funct in %. 2 0.2496 3 0.3288 4 0.3328 5 1000000000000000000000000000000000000	ion f(1 ion ion f(1 ion ion f(1 ion ion ion f(1 ion ion ion ion ion ion f(1 ion ion	$f(x) = \frac{24 \text{ nC}}{3}$	ves ∧ <u>%</u> * Sto Sto Sto Sto Sto Sto Sto Sto	3 8386311115 art=0 :P=1 ■	0 0 CALC ↑ 1 0 1 1 1 1 ()	X f() Erroi 0.01: <u>B0749</u> X)=0.09118	^{DEG} 266464 49 541
k	0	1	2	3	4	5	6
P(X=k)	0,0127	0,0912	0,2497	0,3329	0,2280	0,0760	0,0096
Übungsaufgab	en						
1 a) Bestimmen Sie die Wahrscheinlichkeitsverteilung der Zufallsgröße X: Anzahl der Richtigen beim Lottospiel ,6 aus 49' (ohne Berücksichtigung der Zusatzzahl)							
k	0	1	2	3	4	5	6
P(X=k)							
1 b) Bestimmen Sie auch die Wahrscheinlichkeit für die Gewinnränge mit Zusatzzahl.							
3 Richtige mit Z.		4 Rich	tige mit Z.		5 Richtig	ge mit Z.	
2 In einer Klass	e sind 13 lu	ingen und 1	6 Mädchen	5 hiervon e	rhalten dur	-h Δuslosun	a eine

2. In einer Klasse sind 13 Jungen und 16 Mädchen; 5 hiervon erhalten durch Auslosung eine Freikarte. Mit welcher Wahrscheinlichkeit erhalten k Mädchen eine Freikarte?

k	0	1	2	3	4	5	
P(X = k)							

Heinz Klaus Strick

Gebiet: Stochastik

Einsatz ab Stufe 10

STAT-REG **(Olisiia**)

↓Binomialcdf

 $\left(\frac{1}{6}\right)$

6

3†invNormal **48**Binomialedf

Bestimmen einer Binomialverteilung (vollständige Verteilung)

Beispiel-Aufgabe

Bestimmen Sie die Verteilung der Zufallsgröße X: Anzahl der Sechsen beim 10-fachen Würfeln

Verwendete Optionen des TI-30X Plus MultiView[™]:

Binomialpdf im DISTR-Menü (2nd data)

Definition von Funktionstermen in der table-Option

Erläuterung der Lösung

Der TI-Schulrechner bietet zwei Möglichkeiten, die Wahrscheinlichkeiten zu berechnen und anzuzeigen: Die Verteilung ist im DISTR-Menü aufrufbar (dort hat man die Optionen SINGLE-LIST-ALL); wählt man die gesamte Verteilung, dann wird diese in einer Liste abgespeichert, die jedoch maximal 42 Elemente enthalten darf (also k = 0, 1, ..., n: n ≤ 41). Hier wurde L2 als Liste gewählt; zuvor wurden über den data-Befehl die Werte der Zufallsgröße (X = 0, 1, 2, ..., 10) einzeln in Liste L1 eingegeben, um die Zuordnung zu erleichtern. Die Wahrscheinlichkeiten werden in der Liste 4-stellig angezeigt; in der Anzeige im Display unten sind jeweils 9 Stellen ablesbar.

Die andere Möglichkeit ist, den Term zur Berechnung der Wahrscheinlichkeit (gemäß der BERNOULLI-Formel) über die table -Option als f(x) einzugeben: $P(X = k) = {\binom{10}{t}} \cdot \left(\frac{1}{2}\right)^k \cdot \left(\frac{5}{2}\right)^{10-k}$

und

dann in der Wertetabelle nachzuschauen (die Funktionsvariable heißt grundsätzlich x).

ISTINOTICIUSZINI (STANISLA) X: STANISLA LIST ALL +		LENGTHERMERINE (1 SAVE FOR 0111 SAVE TO: L1 LENG L3	B B ⁰⁶⁶ 0 0 1 0 3230 2 0 2907 3 0 1550 1
B B ^{DEG} H 0.0543 5 0.0130 6 0.0022 7 No.0321 L2(8)=0.000248072	B B ^{ME} 8 B ^{ME} 9 8.3E ⁻⁷ 10 1.7E ⁻⁸ L2(9)=0.000018605		
f(x)=10 nCr x*(▶	Image: start = 0 000 Start = 0 1 Step = 1 1 Image: start = 0 2 Image: start = 0 2	χ f(X) Error 0.161505583 1 0.323011166 χ=-1 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Übungsaufgaben

1. Bestimmen Sie die Wahrscheinlichkeitsverteilung der Zufallsgröße X: Anzahl der Wappen beim 20-fachen Münzwurf

k	0	1	2	3	4	5	6	7	8	9	10
P(X = k)											
k	11	12	13	14	15	16	17	18	19	20	
P(X = k)											

2. Bestimmen Sie die Wahrscheinlichkeitsverteilung der Zufallsgröße X: Anzahl der Erfolge beim 12-stufigen BERNOULLI-Versuch mit p = 0,3

k	0	1	2	3	4	5	6	7	8	9	10	11	12
P(X = k)													

Heinz Klaus Strick

Gebiet: Stochastik Einsatz ab Stufe 10								
Geblet: 5to	CNASTIK				EINS	atz ab Stu	le 10	
Bestimmen einer Binomialverteilung (einzelne Werte)								
Beispiel-Aufgabe								
200 Rosinen werden zufällig in den Teig von 100 Rosinenbrötchen verteilt. Ein Rosinenbrötchen wird zufällig ausgewählt.								
Mit welcher Wahrscheinlichkeit ist in diesem Brötchen keine Rosine, genau eine Rosine, zwei Rosinen, drei, vier, mehr als vier Rosinen?								
Verwendete (Optionen des 1	I-30X Plus I	MultiView™	:	CTOT I		:G	
Binomialpdf i	m DISTR-Men	Ü ([2nd] (data])		STHT= 31invh S↓Bind 5↓Bind	(EG DIS Normal Omialedf Omialedf		
Erläuterung	der Lösung							
Die Berechnung von einzelnen Wahrscheinlichkeiten der Binomialverteilung ist über das DISTR- Menü aufrufbar; dort kann man die Option SINGLE oder LIST aufrufen. Wählt man LIST, dann muss man zunächst eine Liste von interessierenden Werten anlegen. Dies geschieht hier in Liste L1 über den data -Befehl. Die berechneten Wahrscheinlichkeiten werden in der Liste 4-stellig angezeigt; in der Anzeige im Display unten sind jeweils 9 Stellen ablesbar. Wir modellieren den Vorgang als 500-stufigen BERNOULLI-Versuch mit Erfolgswahrscheinlichkeit p = 1/100. Wir entnehmen die Einzelwahrscheinlichkeiten der Liste L2. Statt die berechneten 5 Wahrscheinlichkeiten zu addieren, benutzen wir die kumulierte Binomialverteilung, um den Wert P(X ≤ 4) zu berechnen und hieraus P(X > 4) = 1 – 0,9483 = 0,0517 zu bestimmen $\underbrace{\mathbb{I}_{\text{EXPCESS}} = 1 \times 100 \qquad \underbrace{\mathbb{I}_{\text{EXPESS}} = 1 \times 100 $								
Wir modellier p = 1/100. Wi Wahrscheinlie $P(X \le 4)$ zu b EXECTION 10 $P(X \le 4)$ zu c $P(X \le 4)$	en den Vorgar ir entnehmen o chkeiten zu ad erechnen und 1 < 100 t ST AL	ng als 500-st lie Einzelwal dieren, benu hieraus P(X	tufigen BERN hrscheinlich utzen wir die > 4) = 1 - 0 L3 t L3 t L3 2 CALC	NOULLI-Vers keiten der L kumulierte 0,9483 = 0,0 0 2707 0 2707 0 1814 (1) = 0 1339	uch mit Erfo iste L2. Sta Binomialver 517 zu best 9065 79674	Igswahrsch tt die berech rteilung, um immen 0 2721 0 1811 0 090	einlichkeit neten 5 den Wert	
Wir modellier p = 1/100. Wi Wahrscheinli $P(X \le 4)$ zu b BHIGHERSTOR TRIALSENER P(SUCCESS) = BHIGHERSTOR	en den Vorgar ir entnehmen o chkeiten zu ad erechnen und 1 < 100 t SAV t SAV t SAV t SAV t SAV t SAV	ng als 500-st lie Einzelwal dieren, benu hieraus P(X	tufigen BERN hrscheinlich utzen wir die > 4) = 1 - 0 L3 t L3 t 2 CALC L2 CALC L2 VAL ST(SO	NOULLI-Vers keiten der L kumulierte),9483 = 0,0 0.2720 0.2720 0.1819 (1)= 0.1339 (1)= 0.1339 (1)= 0.1339 (1)= 0.1339 (1)= 0.1339 (1)= 0.1339 (1)= 0.1339	uch mit Erfo iste L2. Sta Binomialver 517 zu best 79674	lgswahrsch tt die berech rteilung, um immen 0. 2721 0. 1811 0. 090	einlichkeit neten 5 den Wert	
Wir modellier p = 1/100. Wi Wahrscheinli P(X ≤ 4) zu b Istrontic Ist I RIALS=n=20 P(SUCCESS)=	en den Vorgar ir entnehmen c chkeiten zu ad erechnen und	ng als 500-st lie Einzelwal dieren, benu hieraus P(X orregi peri ST: 11 L2 E T0: L1 L2 E T0: L2 E T0: L1 L2 E T0:	tufigen BERN hrscheinlich utzen wir die > 4) = 1 – 0 1 = 1 - 0 1 = 1 - 0 1 = 1 - 0 1 = 1 = 0	NOULLI-Vers keiten der L kumulierte),9483 = 0,0 0.2720 0.2720 0.1819 (1)= 0.1339 (1)= 0.1	uch mit Erfo iste L2. Sta Binomialver 517 zu best 79674 79674	Igswahrsch tt die berech rteilung, um immen 0 272 0 181 0 090 (6)=	einlichkeit neten 5 den Wert	
Wir modellier p = 1/100. Wi Wahrscheinli P(X ≤ 4) zu b Istronteners F(SUCCESS) =	en den Vorgar ir entnehmen c chkeiten zu ad erechnen und 1 < 100 1 < 100 1 < 100 k k P(X = k)	ng als 500-st lie Einzelwal dieren, benu hieraus P(X CFECT FECT ST: L1 L2 E T0: L1 L2 E T0	tufigen BERN hrscheinlich utzen wir die > 4) = 1 – 0 1 = 1 - 0 1 = 1 - 0 1 = 1 - 0 1 = 1 = 0 1 = 1 0 = 1 0,2707	NOULLI-Vers keiten der L kumulierte),9483 = 0,0 0.2720 0.2720 0.1815 (1)=0.1339 CONTROLOGIA (1)=0.1339 CONTROLOGI	uch mit Erfo iste L2. Sta Binomialver 517 zu best 79674 79674 L1	Igswahrsch tt die berech rteilung, um immen 0. 2720 0. 1810 0. 0902	einlichkeit neten 5 den Wert	
Wir modellier p = 1/100. Wi Wahrscheinli- P(X ≤ 4) zu b Istrontener F(SUCCESS) = Lösung:	en den Vorgar ir entnehmen c chkeiten zu ad erechnen und 1 < 100 1 <	ig als 500-st lie Einzelwal dieren, benu hieraus P(X	tufigen BERN hrscheinlich $tzen wir die> 4) = 1 - 0\mathbb{P}^{1}$	NOULLI-Vers keiten der L kumulierte),9483 = 0,0 0.2720 0.2720 0.1814 (1)=0.1339 COLLEE0.94829 DRE: 1009210 DRE: 1009210 DRE: 1009210 DRE: 1009210	uch mit Erfo iste L2. Sta Binomialver 517 zu best 29674 29674	Igswahrsch tt die berech rteilung, um immen 0. 272: 0. 181 0. 090: (6)=	einlichkeit nneten 5 den Wert	
Wir modellier p = 1/100. Wi Wahrscheinli- P(X ≤ 4) zu b ISTOFICESS) P(SUCCESS) Lösung: Übungsaufg 1. Eine Schul Person, eine, 25. Februar O Jahres gleich	en den Vorgar ir entnehmen o chkeiten zu ad erechnen und 1×100 $1 \times$	als 500-st lie Einzelwal dieren, benu hieraus P(X ST: L1 E T0: L1 CCESS)=0 0 0,1340 0 Schülern/ir shr als drei S lodellierungs 55 ; Schaltjal	tufigen BERN hrscheinlich utzen wir die > 4) = 1 – 0 1 - 0 1 - 0 2 2 1 2 1 2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1	NOULLI-Vers keiten der L kumulierte),9483 = 0,0 0.2720 0.2720 0.1814 (1)= 0.1339 COLLE AGAIN 2 0,2720 0,2720 ot. Mit welch n an einem Die Wahrsch nicht berück	uch mit Erfo iste L2. Sta Binomialver 517 zu best 79674 29674 29674 3 3 0,1814 er Wahrsch bestimmten heinlichkeit sichtigt.)	lgswahrsch tt die berech rteilung, um immen (6) = 4 0,0902 einlichkeit h Tag, z. B. a ist für alle T	einlichkeit neten 5 den Wert	
Wir modellier p = 1/100. Wi Wahrscheinli- P(X ≤ 4) zu b INTELSESS) = CSUCCESS) = Lösung: Übungsaufg 1. Eine Schul Person, eine, 25. Februar C Jahres gleich Lösung:	en den Vorgar ir entnehmen o chkeiten zu ad erechnen und I > I > I = I I > I = I K P(X = k) aben e wird von 800 zwei, drei, me Geburtstag? (N groß: p = 1/36 k	als 500-st lie Einzelwal dieren, benu hieraus P(X	tufigen BERN hrscheinlich utzen wir die > 4) = 1 – 0	NOULLI-Vers keiten der L kumulierte),9483 = 0,0 0.2720 0.1814 (1)= 0.1339 COLLECTION CO	uch mit Erfo iste L2. Sta Binomialver 517 zu best 79674 23736 2576 2576 2576 2576 2576 2576 2576 257	lgswahrsch tt die berech rteilung, um immen (6) = (6) = (7) (7) (7) (7) (7) (7) (7) (7) (7) (7)	einlichkeit neten 5 den Wert	

2. Ein Rouletterad (bestehend aus 37 gleich großen Sektoren) wird 50-mal gedreht. Mit welcher Wahrscheinlichkeit wird die Kugel auf einem bestimmten Feld, z. B. auf dem Feld mit der Nummer 0, keinmal, einmal, zweimal, mehr als zweimal liegen bleiben?

Lösung:	k	0	1	2	> 2	
	P(X = k)					

Heinz Klaus Strick

Gebiet: Stochastik

Einsatz ab Stufe 10

Berechnung des Erwartungswerts und der Varianz von Binomialverteilungen

Beispiel-Aufgabe

Berechnen Sie den Erwartungswert und die Varianz der Binomialverteilungen mit n = 100 und p = 0,1; 0,2; 0,3; ...; 0,9 gemäß Definiton.

Verwendete Optionen des TI-30X Plus MultiView[™]: Listen-Formeln (im data -Menü) Summen-Funktion im [math]-Menü

Erläuterung der Lösung

Gemäß Definition des Erwartungswerts $\mu = E(X)$ bzw. der Varianz V(X) = σ^2 gilt:

$$E(X) = \sum_{k=0}^{n} k \cdot P(X = k) \text{ und } V(X) = \sum_{k=0}^{n} (k - \mu)^{2} \cdot P(X = k) \text{ wobei } P(X = k) = \binom{n}{k} \cdot p^{k} \cdot (1 - p)^{k}$$

Die Summenfunktion des TI-30X Plus MultiViewTM bietet die Möglichkeit, auch Summen mit vielen Summanden zu berechnen. Wählt man Option 5 im math-Menü, dann erscheint das Summensymbol Σ ; im Zusammenhang mit den Listenformeln (die in eine Zeile passen müssen) muss eine bestimmte Reihenfolge der Eingabe (Komma als Trennzeichen) beachtet werden:

Sum(Term mit der Variablen x, Variablenname x, kleinster Wert für x, größter Wert für x)

Zur konkreten Aufgabe: In Liste L1 (data -Menü) geben wir die gewünschten Werte für die Erfolgswahrscheinlichkeit p ein. Dann erfolgt die Eingabe der Listenformel: Drückt man ein zweites Mal auf die data -Taste, erscheint das Menü zur Bearbeitung der Listen. Wir markieren ein Feld in Liste L2; jetzt erwartet der Rechner die Eingabe einer Berechnungsvorschrift für die Liste L2. Diese lautet für E(X): L2 = Sum(x * 100 nCr x * L1^x * (1 – L1)^(100 – x), x, 0, 100)

Nach einiger Rechenzeit erscheinen dann die Erwartungswerte in der Spalte für Liste L2. Offensichtlich gilt: $E(X) = \mu = n \cdot p$.

Analog berechnen wir die Varianzen in Liste L3, wobei auch die gerade bestimmten Erwartungswerte aus Liste L2 verwendet werden. Auffallend an den Rechenergebnissen ist, dass die Varianzen gleich sind für p und 1 – p, und weiter, dass für alle Beispiele gilt: $V(X) = n \cdot p \cdot (1 - p)$

Übungsaufgaben

Überprüfen Sie die Richtigkeit der Formeln $E(X) = n \cdot p$ und $V(X) = n \cdot p \cdot (1 - p)$ für

n = 50 [n = 80] und für $p = \frac{1}{4}; p = \frac{3}{4}; p = \frac{1}{3}; p = \frac{2}{3}; p = \frac{1}{6}; p = \frac{5}{6}.$

Gebiet: Stochastik

Optimierung der Annahme von Flugbuchungen

Beispiel-Aufgabe

Wegen der Kapazität der eingesetzten Flugzeuge können für eine bestimmte Flugverbindung im Inland maximal 150 Plätze gebucht werden. Dennoch nimmt die Fluggesellschaft mehr Buchungen an, da im Mittel 10 % der Buchungen nicht wahrgenommen werden. An jeder Buchung verdient die Fluggesellschaft 30 € (auch bei den Fluggästen, die nicht erscheinen, denn diese müssen eine *No-Show-*Gebühr zahlen). Falls eine Buchung angenommen wurde, aber der Passagier nicht mitfliegen kann, muss nach EU-Recht eine Entschädigung von 250 € gezahlt werden.

- a) Berechnen Sie den zu erwartenden Gewinn bei Annahme von 160 Buchungen.
- b) Bei welcher Anzahl von Buchungen ist der Gewinn die Fluggesellschaft maximal?

Verwendete Optionen des TI-30X Plus MultiView[™]: Summenfunktion im math-Menü Listenformeln in [data]-Menü

Erläuterung der Lösung

a) Wenn 160 Buchungen angenommen werden, muss mit Wahrscheinlichkeit P(X = 151) ein Betrag von 100 € als Entschädigung gezahlt werden, mit Wahrscheinlichkeit P(X = 152) ein Betrag von 200 €, … und mit Wahrscheinlichkeit P(X = 160) ein Betrag von 1000 €, insgesamt

 $\sum_{k=151}^{160} \binom{160}{k} \cdot 0,9^k \cdot 0,1^{160-k} \cdot (k-150) \cdot 250 \approx 16,19$

Im Mittel müsste also bei Annahme von 160 Buchungen ein Betrag von 16,19 € an Entschädigungen gezahlt werden, d. h. der Gewinn beträgt 160 · 30 € --- 16,19 € = 4783,81 €.

b) Es wäre nun lästig, alle interessierenden Werte von n in den Summenterm einzutippen und die so berechneten Daten in einer Tabelle zu erfassen. Hierzu kann man die Option der Listenformeln benutzen, die man über das data -Menü ansteuern kann (data doppelt anklicken):

Man gibt interessierende Werte für n in die Liste L1 ein und definiert dann für L2 eine Formel; dabei erscheint das Summenzeichen als "sum"-Befehl, bei dem nacheinander der Summenterm, der Name der Variablen, der kleinste und der größte Wert von x eingegeben werden müssen:

 $L2 = Sum(L1 nCr x * 0.9^{x} * 0.1^{(L1-x)*(x - 150)*250}, x, 151, L1)$

Nachdem wir so die zu erwartenden Entschädigungsbeträge berechnet haben, können wir zur Berechnung des Gewinns kommen; dazu definieren wir die Listenformel L3 = L1*30 - L2

Wir lesen ab: Bei der Annahme von 162 Buchungen ist der Gewinn am größten (4804,10 €).

Übungsaufgaben

- 1. Welche Anzahl von Buchungen wäre optimal, wenn als Entschädigung auf 300 € erhöht würde [nur 150 € gezahlt werden müssen]?
- 2. Wie verändert sich die Rechnung, wenn der Gewinn pro Buchung 25 € beträgt?

Arbeitsblätter

für den TI-30X Plus MultiView[™]

Heinz Klaus Strick

Gebiet: Stochastik	Einsatz ab Stufe 10					
Bestimmen von Intervall-Wahrscheinlichkeiten bei einer Binomialverteilung (1)						
Beispiel-Aufgabe64 % der Haushalte in Deutschland verfügen über einen digitalen Fotoapparat. Mit welcher Wahrscheinlichkeit würde man bei einer Zufallsstichprobe in 500 Haushalten in(1) höchstens 320(2) weniger als 310(3) mindestens 315(4) mehr als 330(5) mindestens 312, höchstens 325Haushalten einen solchen Fotoapparat finden?						
Verwendete Optionen des TI-30X Plus MultiView [™] : Binomialcdf im DISTR-Menü (2nd data) 4↑	AT-REG DISUS Binomialedf Binomialcdf Poissonedf					
Erläuterung der Lösung						
Die Berechnung von Intervall-Wahrscheinlichkeiten der Binomialvert Menü aufrufbar. Die berechneten Wahrscheinlichkeiten können abge die Lösung von Aufgabe (3) – (5) wichtig ist:	eilung ist über das DISTR- espeichert werden, was für					
(1) $P(X \le 320) = 0,5168$; (2) $P(X < 310) = P(X \le 309) = 0,1639$						
Istraction continue *** *** *** *** TRIALS=n=500 VALUE=0.516843624 TRIALS=n=500 P(SUCCESS)=0.64 STORE: IMM yztabcd X=320 CALC SOLVE	t (<u>Senateropers)</u> t Value=0.163916815 Store: <u>Mo</u> yztabod Solve Again Quit					
(3) $P(X \ge 315) = 1 - P(X \le 314) = 0,6969$; (4) $P(X > 330) = 1 - P(X \le 314) = 0,6969$; (4) $P(X > 330) = 1 - P(X \le 314) = 0,6969$; (4) $P(X > 330) = 1 - P(X \le 314) = 0,6969$; (4) $P(X > 330) = 1 - P(X \le 314) = 0,6969$; (4) $P(X > 330) = 1 - P(X \le 314) = 0,6969$; (4) $P(X > 330) = 1 - P(X \le 314) = 0,6969$; (4) $P(X > 330) = 1 - P(X \le 314) = 0,6969$; (5) $P(X > 330) = 1 - P(X \le 314) = 0,6969$; (5) $P(X > 330) = 1 - P(X \le 314) = 0,6969$; (5) $P(X > 330) = 1 - P(X \le 314) = 0,6969$; (7) $P(X > 330) = 1 - P(X \le 314) = 0,6969$; (7) $P(X > 330) = 1 - P(X \le 314) = 0,6969$; (7) $P(X > 330) = 1 - P(X \le 314) = 0,6969$; (7) $P(X > 330) = 1 - P(X \le 314) = 0,6969$; (8) $P(X > 330) = 1 - P(X \le 314) = 0,6969$; (9) $P(X > 330) = 1 - P(X \le 314) = 0,6969$; (9) $P(X > 330) = 1 - P(X \le 314) = 0,6969$; (9) $P(X > 330) = 1 - P(X \le 314) = 0,6969$; (9) $P(X > 330) = 1 - P(X \le 314) = 0,6969$; (9) $P(X > 330) = 1 - P(X \le 314) = 0,6969$; (9) $P(X > 330) = 1 - P(X \le 314) = 0,6969$; (9) $P(X > 330) = 1 - P(X \le 314) = 0,6969$; (9) $P(X > 330) = 1 - P(X \le 314) = 0,6969$; (9) $P(X > 314) =$	≤ 329) = 0,1640					
Istrophenics t Istrophenics Istrophenics t Istrophenics t Istrophenics t Istrophenics <tht< th=""> Istrophenics <tht< td="" tr<=""><td>1−0.30307516534 0.696924835 53</td></tht<></tht<>	1−0.30307516534 0.696924835 53					
ISPITOLING MS	389 69					
$(5) P(312 \le X \le 325) = P(X \le 325) - P(X \le 311) = 0,6947 - 0,2137 = 0$	0,4809 (wegen Rundung)					
Istractice contract ** t Istractice contract ** TRIALS=n=500 VALUE=0.694678163 TRIALS=n=500 P(SUCCESS)=0.64 STORE: NO Yzizabod %=311 CALC Istractice contract QUIT	t VALUE=0.213736195 STORE: NO YZ t <u>S</u> bed _C Solve Again Quit					
3::::::::::::::::::::::::::::::::::::						
Übungsaufgaben						
Eine Münze wird 400-mal geworfen. Mit welcher Wahrscheinlichkeit	ist die Anzahl der Wappen					
(1) großer als 200 (5) höchstens gle						
(2) minuestens gleich 200 (6) Kielher als 213						
(4) größer als 185, aber kleiner als 207						

Heinz Klaus Strick

Gebiet: Stochastik	Einsatz ab Stufe 10						
Bestimmen von Intervall-Wahrscheinlichkeiten bei einer Binomialverteilung (2)							
Beispiel-Aufgabe							
Ein Würfel wird 300-ma	Ein Würfel wird 300-mal geworfen. Mit welcher Wahrscheinlichkeit ist die Anzahl der Sechsen						
(1) größer als 50 (5) höchstens gleich 48							
(2) mindestens gleich 45 (6) kleiner als 55							
(3) mindestens gleich 50, höchstens gleich 60							
(4) größer als 47, aber	kleiner als 53						
Verwendete Optionen d	es TI-30X Plus MultiVie	w TM :					
Summenfunktion im mai	h-Menü	비교 41) 686 686	Pfactor wrod(
Erläuterung der Lösur	ng						
Da der größte auftreten gleich $\begin{pmatrix} 300\\ 150 \end{pmatrix} \approx 9,4 \cdot 10^{88}$ is	de Binomialkoeffizient d st, also noch auf dem R	er Wahrscheinlichkeif echner darstellbar ist,	sverteilung für n = 300 kann man – wenn auch mit				
größerem Zeitaufwand	- die Intervall-Wahrsche chnen: $P(X = k) = \begin{pmatrix} 300\\ k \end{pmatrix}$	einlichkeiten mithilfe d $0 \cdot \left(\frac{1}{6}\right)^k \cdot \left(\frac{5}{6}\right)^{300-k}$	er Summenfunktion gemäß				
(1) P(X > 50) = P(51 ≤	X ≤ 300) ≈ 0,462 ; (2) P($(X \ge 45) = P(45 \le X \le 1)$	300) ≈ 0,802 ;				
(3) $P(50 \le X \le 60) \approx 0.4$	469; (4) P(47 < X < 53)	$= P(48 \le X \le 52) \approx 0,$	301;				
(5) $P(X \le 48) = P(0 \le X)$	≤ 48) ≈ 0,415 ; (6) P(X	$< 55) = P(0 \le X \le 54)$	≈ 0,760				
300 Σ (300 nCr %*► x=51 0.462327175	300 Σ (300 nCr α*► x=45 0.801626025	€0 Σ (300 nCr %× x=50 0.46938373	~ 52 ↓ Σ (300 nCr x*) x=48 0.301310412				
48 Σ(300 nCr %*() ×=0 0.414523582	⁵⁴ ∑(300 nCr %*(► x=0 0.759896152						
Übungsaufgaben							
1. Mit welcher Wahrsch	neinlichkeit ist die Anzah	I der Wappen beim 2	00-fachen Münzwurf				
(1) größer als 100		(5) höchstens glei	ch 98				
(2) mindestens gleich 9	95	(6) kleiner als 103					
(3) mindestens gleich 9(4) größer als 92, aber	00, höchstens gleich 105 kleiner als 103	5					
2. Mithilfe des table-Mei belle ablesen. Was bere	nüs kann man eine Funk echnet der TI-30X Plus N	tion definieren und d MultiView [™] (richtig tro	eren Werte in der Werteta- otz der Variablen-Einfalt)?				
$f(x) = \sum_{x=0}^{\infty} (10 \text{ nCr})$	f(x)= 4 4 [%] *.6 ^{10−%})	X f(X) 0.00604661 1 0.04635740 2 0.16728975	x x y y y y x y y y y y y y y y y y y y				

Heinz Klaus Strick

Gebiet: Stochastik

Einsatz ab Stufe 11

Bestimmen von 95 %- Umgebungen um den Erwartungswert (sigma-Regel)

Beispiel-Aufgabe

Bestimmen Sie für (1) n = 100 bzw. (2) n = 200 und die Erfolgswahrscheinlichkeiten p = 0,3 bzw. p = 0,4 bzw. p = 0,5 symmetrische Umgebungen um den Erwartungswert μ = n · p derart, dass diese eine Wahrscheinlichkeit von ungefähr 95 % haben.

Berechnen Sie auch jeweils die zugehörige Standardabweichung und geben Sie den Radius der Umgebung als Vielfaches der Standardabweichung an. Welche Gesetzmäßigkeit fällt auf?

Verwendete Optionen des TI-30X Plus MultiView[™]:

Summenfunktion im math-Menü

Erläuterung der Lösung

Mithilfe der Summenfunktion kann man Wahrscheinlichkeiten von symmetrischen Umgebungen um den Erwartungswert berechnen. Definiert man für ein konkretes n die Funktion f wie folgt:

 $f(x) = \sum_{k=\mu-x}^{\mu+x} {n \choose k} \cdot p^k \cdot (1-p)^{n-k}$ dann zeigt die Wertetabelle beispielsweise für p = 0,4 und n = 100:

$$f(0) = P(X = 40) \approx 0,081$$
; $f(1) = P(39 \le X \le 41) \approx 0,240$ usw.

(Man beachte, dass der TI-30X Plus MultiView[™] auch für den Laufindex k die Bezeichnung x verwendet und nicht verwirrt wird !)

Beispiel: n = 100; p = 0,3 ; P(21 ≤ X ≤ 39) \approx 0,963 → Radius = 9,5	(Rechteckbreite berücksichtigen!)
--	-----------------------------------

	(1) p = 0,3	p = 0,4	p = 0,5	(2) p = 0,3	p = 0,4	p = 0,5
μ	30	40	50	60	80	100
σ	4,58	4,90	5	6,48	6,93	7,07
Radius	2,07σ	1,94σ	1,90σ	1,93σ	1,95σ	1,91σ

Ergebnis: Man stellt für unterschiedliches n und p fest: $P(\mu - 1,96\sigma \le X \le \mu + 1,96\sigma) \approx 0,95$

Übungsaufgaben

Untersuchen Sie, ob die gefundene Regel auch für n = 300 bestätigt wird.

Heinz Klaus Strick

Gebiet: Stochastik

Einsatz ab Stufe 11

Bestimmen von sigma-Umgebungen um den Erwartungswert

Beispiel-Aufgabe

Welche Bedeutung hat die Standardabweichung $\sigma = \sqrt{n \cdot p \cdot (1-p)}$ einer Binomialverteilung? Bestimmen Sie für (1) n = 200 ; p = 0.3 bzw. (2) n = 250 ; p = 0.4 bzw. (3) n = 100 ; p = 0.5 das zum Erwartungswert $\mu = n \cdot p$ symmetrische Intervall [$\mu - z \cdot \sigma$; $\mu + z \cdot \sigma$], z = 1, 2, 3, 3sowie die Wahrscheinlichkeit dieses Intervalls. Was fällt auf?

Verwendete Optionen des TI-30X Plus MultiView[™]:

Summenfunktion im [math]-Menü

Erläuterung der Lösung

Zunächst werden für die angegebenen Werte von n und p die Erwartungswerte μ und die Standardabweichungen σ berechnet sowie die 1 σ -, 2 σ -, 3 σ -Umgebungen von μ bestimmt. Die Wahrscheinlichkeiten der symmetrischen Umgebungen lassen sich mithilfe der Summenfunktion bestimmen. Für konkrete Werte von n und p kann man folgende Funktion definieren:

 $(p^{k} \cdot (1-p)^{n-k})$ (gemäß BERNOULLI-Formel). Die interessierenden Intervall $f(x) = \sum^{\mu+x}$

Wahrscheinlichkeiten können dann der Wertetabelle dieser Funktionen entnommen werden. (Man beachte, dass der TI-30X Plus MultiViewTM auch für den Laufindex k die Bezeichnung x verwendet und nicht verwirrt wird !)

$f(x) = \sum_{x=60-x}^{60+x} (200)$		11 0.924423904 11 0.924423904 11 0.94663369 13 0.963109476 11=12 0.963109476	17 f(%) 17 0.993204379 18 0.995780468 18 0.995743488 19 0.99743488
$f(x) = \sum_{x=100-x}^{100+x} (25)$		π f(1) 14 0.939024378 15 0.954846678 16 0.967061358 17=15 15	и 21 0.994592209 22 0.996404185 23 123
$f(x) = \sum_{x=25-x}^{75+x} (150)$		χ f(%) 11 0.939972784 12 0.959131506 13 0.972847409 %=12 0.972847409	X f(%) 16 0.993148361 17 0.995886702 ES 0.997594484 %=18 X
	(1) n = 200 ; p = 0,3	(2) n = 250 ; p = 0,4	(3) n = 150 ; p = 0,5
μ bzw. σ	(1) n = 200 ; p = 0,3 μ = 60 ; $\sigma \approx 6,48$	(2) n = 250 ; p = 0,4 μ = 100 ; σ ≈ 7,75	(3) n = 150 ; p = 0,5 μ = 75 ; $\sigma \approx 6,12$
μ bzw. σ Ρ([μ – 1σ ; μ + 1σ])	(1) n = 200 ; p = 0,3 μ = 60 ; $\sigma \approx 6,48$ P(54 ≤ X ≤ 66) \approx 0,684	(2) n = 250 ; p = 0,4 μ = 100 ; σ ≈ 7,75 P(93 ≤ X ≤ 107) ≈ 0,667	(3) n = 150 ; p = 0,5 μ = 75 ; $\sigma \approx 6,12$ P(69 ≤ X ≤ 81) \approx 0,712
μ bzw. σ P([μ – 1σ ; μ + 1σ]) P([μ – 2σ ; μ + 2σ])	(1) n = 200 ; p = 0,3 μ = 60 ; $\sigma \approx 6,48$ P(54 ≤ X ≤ 66) $\approx 0,684$ P(48 ≤ X ≤ 72) $\approx 0,947$	(2) n = 250 ; p = 0,4 μ = 100 ; $\sigma \approx 7,75$ P(93 ≤ X ≤ 107) \approx 0,667 P(85 ≤ X ≤ 115) \approx 0,955	(3) n = 150 ; p = 0,5 μ = 75 ; $\sigma \approx 6,12$ P(69 ≤ X ≤ 81) $\approx 0,712$ P(63 ≤ X ≤ 87) $\approx 0,959$
μ bzw. σ P([μ – 1σ ; μ + 1σ]) P([μ – 2σ ; μ + 2σ]) P([μ – 3σ ; μ + 3σ])	(1) n = 200 ; p = 0,3 μ = 60 ; $\sigma \approx 6,48$ P(54 ≤ X ≤ 66) $\approx 0,684$ P(48 ≤ X ≤ 72) $\approx 0,947$ P(41 ≤ X ≤ 79) $\approx 0,997$	(2) n = 250 ; p = 0,4 μ = 100 ; $\sigma \approx 7,75$ P(93 ≤ X ≤ 107) $\approx 0,667$ P(85 ≤ X ≤ 115) $\approx 0,955$ P(77 ≤ X ≤ 123) $\approx 0,998$	$\begin{array}{c} (3) \ n = 150 \ ; \ p = 0,5 \\ \\ \mu = 75 \ ; \ \sigma \approx 6,12 \\ \\ P(69 \leq X \leq 81) \approx 0,712 \\ \\ P(63 \leq X \leq 87) \approx 0,959 \\ \\ P(57 \leq X \leq 93) \approx 0,998 \end{array}$
$\mu \text{ bzw. } \sigma$ $P([\mu - 1\sigma; \mu + 1\sigma])$ $P([\mu - 2\sigma; \mu + 2\sigma])$ $P([\mu - 3\sigma; \mu + 3\sigma])$ Ergebnis: Man stellt f $P(\mu - 1\sigma \le X \le \mu + 1\sigma)$	$\begin{array}{c} (1) \ n = 200 \ ; \ p = 0,3 \\ \mu = 60 \ ; \ \sigma \approx 6,48 \\ \hline P(54 \le X \le 66) \approx 0,684 \\ P(48 \le X \le 72) \approx 0,947 \\ \hline P(41 \le X \le 79) \approx 0,997 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c} (2) \ n = 250 \ ; \ p = 0,4 \\ \mu = 100 \ ; \ \sigma \approx 7,75 \\ \hline P(93 \le X \le 107) \approx 0,667 \\ \hline P(85 \le X \le 115) \approx 0,955 \\ \hline P(77 \le X \le 123) \approx 0,998 \\ \hline P \ fest: \\ \mu + 2\sigma) \approx 0,955 \ ; \ P(\mu - 3c) \end{array}$	$\begin{array}{c} (3) \ n = 150 \ ; \ p = 0,5 \\ \\ \mu = 75 \ ; \ \sigma \approx 6,12 \\ \hline P(69 \leq X \leq 81) \approx 0,712 \\ \hline P(63 \leq X \leq 87) \approx 0,959 \\ \hline P(57 \leq X \leq 93) \approx 0,998 \end{array}$

Untersuchen Sie, ob die gefundenen Regeln auch bestätigt werden für (2) n = 240; p = 1/3(3) n = 120 ; p = 0,45

(1) n = 300; p = 1/4

Heinz Klaus Strick

Gebiet: Stochastik

Einsatz ab Stufe 11

Schluss von der Gesamtheit auf die Stichprobe: Punkt- und Intervallschätzung

Beispiel-Aufgabe

39 % der Haushalte in Deutschland verfügen über einen Gefrierschrank. Eine Stichprobe vom Umfang 1200 wird genommen. Machen Sie eine Prognose, wie viele der Haushalte der Stichprobe über einen Gefrierschrank verfügen (Sicherheitswahrscheinlichkeit 90 %, 95 %, 99 %).

Überprüfen Sie, ob die nach sigma-Regeln bestimmten Intervalle tatsächlich die Vorgaben über die Sicherheitswahrscheinlichkeit erfüllen und korrigieren Sie ggf. die Intervallgrenzen.

Verwendete Optionen des TI-30X Plus MultiView[™]:

Binomialcdf im DISTR-Menü (2nd [data)

Erläuterung der Lösung

Eine Punktschätzung für die Anzahl der Haushalte mit Gefrierschrank in der Stichprobe ist der Erwartungswert μ = n · p = 1200 · 0,39 = 468. Intervallschätzungen werden mithilfe der Stan-

dardabweichung σ vorgenommen: $\sigma = \sqrt{n \cdot p} \cdot (1 - p) = \sqrt{1200 \cdot 0.39 \cdot 0.61} \approx 16.90$. Die 90 %-,

95 %- bzw. 99 %-Umgebungen um den Erwartungswert μ werden gemäß den sigma-Regeln bestimmt. Zur Erleichterung der Kontrollrechnung werden die zugehörigen Intervallgrenzen in Liste L1 (data)-Befehl) eingegeben und zu diesen Werten die kumulierten Wahrscheinlichkeiten bestimmt, z. B. P(441 ≤ X ≤ 495) = P(X ≤ 495) – P(X ≤ 440) = 0,9478 – 0,0514 = 0,8964. Da die sigma-Regeln nur Faustregeln sind, geben sie nur ungefähr die Intervallgrenzen an. Im Falle der 90 %-Umgebung ist die vorgegebene Sicherheitswahrscheinlichkeit (mindestens 90 %) nicht erfüllt; deshalb muss das Intervall um eine Einheit nach unten bzw. oben erweitert werden.

	90 %-Umgebung um μ	95 %-Umgebung um μ	99 %-Umgebung um μ
z·σ	1,64 σ ≈ 27,71	1,96 \cdot $\sigma \approx$ 33,12	2,58 \cdot $\sigma \approx$ 43,59
$\mu - z \cdot \sigma$	440,29	434,88	424,41
μ + z · σ	495,71	501,12	511,59
Intervall	441,, 495	435,, 501	425,, 511
Kontrollrechnung	0,9478 - 0,0514 = 0,8964	0,9760 - 0,0223 = 0,9537	0,9948 - 0,0048 = 0,9900
Korrektur	P(440 ≤ X ≤ 496) = 0,9538 - 0,0454 = 0,9084		

Übungsaufgabe

Ein Würfel wird 300-mal geworfen. Machen Sie eine Prognose, wie oft Augenzahl 6 fallen wird (Sicherheitswahrscheinlichkeit 90 %, 95 %, 99 %). Überprüfen Sie, ob die nach sigma-Regeln bestimmten Intervalle tatsächlich die Vorgaben über die Sicherheitswahrscheinlichkeit erfüllen und korrigieren Sie ggf. die Intervallgrenzen.

Heinz Klaus Strick

Gebiet: Stochastik	Einsatz ab Stufe 11

Testen von Hypothesen – Wahrscheinlichkeit für einen Fehler 2. Art

Beispiel-Aufgabe

Wenn man bei einem Würfelspiel einen gewöhnlichen Würfel benutzt, geht man davon aus, dass die Wahrscheinlichkeit p für das Auftreten der Augenzahl 6 bei diesem Würfel gleich 1/6 ist (LAPLACE-Modell). Diese Hypothese soll für einen konkret verwendeten Würfel getestet werden. Dazu soll er 600-mal geworfen und die Anzahl der Sechsen bestimmt werden.

- a) Bestimmen Sie eine Entscheidungsregel f
 ür α ≤ 0,05 (α = Wahrscheinlichkeit f
 ür einen Fehler 1. Art).
- b) Wie groß ist β (= Wahrscheinlichkeit für einen Fehler 2. Art), wenn die tatsächliche Wahrscheinlichkeit p für Augenzahl 6 gleich 0,15 ; 0,14 ; 0,13 ; ... ; 0,10 ist?

Verwendete Optionen des TI-30X Plus MultiView[™]:

Binomialcdf im DISTR-Menü (2nd data)

Erläuterung der Lösung

Wenn p = 1/6 ist, dann wird die Anzahl der Sechsen mit einer Wahrscheinlichkeit von ca. 95 % in der 1,96 σ -Umgebung des Erwartungswerts μ liegen; hier ist: μ = 100 und $\sigma \approx$ 9,13.

Wir schätzen: Mit einer Wahrscheinlichkeit von ca. 95 % gilt für die Anzahl X der Sechsen: $83 \le X \le 117$. Zur Kontrolle des nach den Faustregeln bestimmten Intervalls wird die Wahrscheinlichkeit mithilfe der Binomialcdf-Funktion im DISTR-Menü exakt berechnet:

 $P(83 \le X \le 117) = P(X \le 117) - P(X \le 82) = 0,9704 - 0,0254 = 0,9450$

Das Intervall (= Annahmebereich der Hypothese) muss erweitert werden, damit die Bedingung $\alpha \le 0.05$ erfüllt ist. Durch ähnliche Rechnung wie oben erhält man: P(82 \le X \le 118) = 0.9575.

Die Entscheidungsregel lautet also: Verwirf die Hypothese p = 1/6, falls in der Stichprobe vom Umfang n = 600 weniger als 82 oder mehr als 118 Sechsen auftreten.

Ein Fehler 2. Art tritt auf, wenn dem Versuch eigentlich ein anderes p zugrunde liegt, das Versuchsergebnis aber im Annahmebereich der Hypothese liegt.

Die Berechnung von $P(82 \le X \le 118) = P(X \le 118) - P(X \le 81)$ für die angegebenen Wahrscheinlichkeiten kann beispielsweise mithilfe der Option erfolgen, dass die Wahrscheinlichkeiten in einer Liste (L2) abgespeichert werden, wobei man vorher die Werte 118 und 81 in Liste L1 abgelegt hat; man muss dann nur noch die zugrunde liegende Wahrscheinlichkeit p variieren.

So ergibt sich: $\beta(0,15) \approx 83,4$ %; $\beta(0,14) \approx 61,1$ %; $\beta(0,13) \approx 33,1$ %; $\beta(0,12) \approx 11,8$ %; $\beta(0,11) \approx 2,4$ %; $\beta(0,10) \approx 0,25$ %.

Übungsaufgabe

Wahrscheinlichkeiten für einen Fehler 2. Art können auch mithilfe von Listenformeln bestimmt werden: L1 für Werte des tatsächlichen p; L2 für die Wahrscheinlichkeit β . Führen Sie dies aus.

Gebiet: Stochastik Einsatz ab Stufe 11			fe 11				
Das klassische Geburtstagsproblem und Variationen							
Beispiel-Aufgal	be						
Beim klassische ist, dass unter 23 Geburtstag habe für alle Tage des	n Geburtsta 3 zufällig au en. Setzt ma s Jahres gle	gsproblem g sgewählten in zur Vereii ich ist, danr	geht es um Personen r nfachung vo n ergibt sich	die Frage, w nindestens : raus, dass o für das Geg	<i>v</i> ie groß die zwei sind, d die Geburts- jenereignis	Wahrscheir ie am gleich -Wahrscheir	nlichkeit Ien Tag nlichkeit
P(die 23 Perso	nen haben	lauter vers	schiedene	Geburtstag	$e) = \frac{365 \cdot 3}{2}$	64 · 363 · … · 365 ²³	343
Verwendete Opt	ion des TI-3	0X Plus Mu	IltiView [™] :			DEG	
Produkt-Funktion	n des [math]-	Menüs			41⊧Pfac 5:sum(MBProd(JM DMS R tor	{ • ₽
Erläuterung der	r Lösung						
Das Produkt der math-Menüs des am Produktzeich multipliziert) ein, des Gegenereig	Faktoren 3 s TI-30X Plu nen II sowie vgl. 1. und nisses; die \	43, 344, …, is MultiView den Funktio 2. Screensh Wahrschein	365 bestim ™: Dazu fül onsterm x (h not. Rechts s lichkeit des	men wir mit It man den H ier werden steht die zu gesuchten E	hilfe der Pro kleinsten un nur die Zahl bestimmene Ereignisses	odukt-Funkti d größten W en selbst m de Wahrsch ist daher gle	on des /ert für x iteinander einlichkeit eich
P(<i>mindestens z</i> v	vei von 23 F	Personen ha	aben am gle	ichen Tag G	eburtstag)		
= 1 – 0,4927 = 0	,5073 = 50,	73 %.					
x ≡ (::)		5 [(%) 43 4.220081	93E28	55 II (n)/36 343 U.492	086 ~ 5 ²³ 102766		
Übungsaufgabe	en						
1. Die Wahrsche gleich 50 %, d. h und mindestens nenzahl ergibt si	1. Die Wahrscheinlichkeit für mindestens zwei gleiche Geburtstage ist bei 23 Personen ungefähr gleich 50 %, d. h., dies wäre eine faire Wette. Jemand möchte bei seiner Wette sicherer sein und mindestens eine Gewinn-Wahrscheinlichkeit von 60 % [75 %] haben. Bei welcher Personenzahl ergibt sich eine solche Gewinn-Wahrscheinlichkeit?					n ungefähr er sein Perso-	
P(<i>mindestens z</i> v	vei von	Personen h	aben am gle	eichen Tag	Geburtstag)	≈ 60 %	
P(<i>mindestens z</i> v	vei von	Personen h	aben am gle	eichen Tag	Geburtstag)	≈ 75 %	
2. Ein Rouletterad ist im Prinzip ein Glücksrad mit 37 gleich großen Sektoren, die mit den Zahlen von 0 bis 36 beschriftet sind. Auf diesen Sektoren bleibt dann eine Kugel zufällig liegen. Ein solches Glücksrad werde <i>n</i> -mal gedreht.							
Von welcher Anzahl <i>n</i> an lohnt es sich darauf zu wetten (d. h. ist die Wahrscheinlichkeit größer als 50 %), dass die Kugel auf irgendeinem Sektor mindestens zweimal liegen geblieben ist?							
Bestimmen Sie dazu mithilfe des Taschenrechners die konkreten Wahrscheinlichkeiten für das Gegenereignis E' <i>"die Kugel bleibt in n Spielrunden auf lauter verschiedenen Sektoren liegen":</i>							
п	3	4	5	6	7	8	9
P(E')							

Heinz Klaus Strick

Gebiet: Stochastik	Einsatz ab Stufe 11				
Bestimmen von Wahrscheinlichkeiten bei normalverteilt	en Zufallsgrößen				
Beispiel-Aufgabe					
Der Kopfumfang von 1-jährigen Mädchen ist näherungsweise normalverteilt mit Erwartungswert μ = 44,9 cm und Standardabweichung σ = 1,4 cm.					
a) Mit welcher Wahrscheinlichkeit hat ein zufällig ausgewähltes, Kopfumfang, der	1-jähriges Mädchen einen				
(1) kleiner ist als 46,0 cm, (2) mindestens	s 44,0 cm beträgt,				
(3) mindestens 42,5 cm ist, aber höchstens 47,5 cm?					
b) Setzen Sie den Satz fort:					
(1) "70 % der 1-jährigen Mädchen haben einen Kopfumfang, c	ler kleiner ist als …"				
(2) "60 % der 1-jährigen Mädchen haben einen Kopfumfang, c	ler größer ist als …"				
Verwendete Optionen des TI-30X Plus MultiView [™] : Normalcdf und invNormal im DISTR-Menü (2nd data)	™ STAT-REG DUSM3 L:Normaledf S↓invNormal				
zen der Integration (wobei die Voreinstellungen – 10 ⁹⁹ und + 10 ⁹⁹					
Hean=Hu=Hu, 9 Si9Ha=1.4∎ ↓ CALC	CALC CALC CALC				
INCONTRACTION *** <	⁶⁵ t <mark>(Казатар (3253)</mark> t Value=0.925116548 Store: <u>(200</u> % узtabad Calc Solve Again Quit				
Wir lesen ab: (1) $P(X < 46,0) \approx 78,4 \%$; (2) $P(X \ge 44,0) = P(X > 43)$ (3) $P(42,5 \le X \le 47,5 \text{ cm}) \approx 92,5 \%$	14,0) ≈ 74,0 %				
b) Um diese Aufgabe zu lösen, benötigen wir die zugehörige Umk tion, die einer Wahrscheinlichkeit die entsprechenden (Integration	ehrfunktion, also eine Funk- s-) Grenzen zuordnet.				
MADIONICAL **** **** **** MADIONICAL t MADIONICAL t MADIONICAL t Areas **** t MADIONICAL t MADIONICAL t Areas **** VALUE=45.63416071 areas t VALUE=44.54531406 Hean=Hu=44.9 STORE: STORE: STORE: STORE: STORE: Sigha=1.4 CALC SOLVE AGAIN QUIT CALC SOLVE AGAIN					
Wir lesen ab: (1) $P(X < 45,63) = P(X \le 45,63) = 60 \%$ und (2) $P(X < 44,55) = P(X \le 44,55) = 40 \%$, also $P(X > 44,55) = 60 \%$.					
Übungsaufgaben					
Für die näherungsweise normalverteilte Körpergröße von 6 Monate alten Jungen gilt: $\mu = 67,6 \text{ cm}$ und $\sigma = 2,2 \text{ cm}$. a) Wie viel Prozent der 6 Monate alten Jungen sind kleiner als 68,0 cm [größer als 64,5 cm] ? b) Für welche Jungen gilt, dass sie zu den 20 % größten der Altorectufe gehören?					

Heinz Klaus Strick

Gebiet: Stochastik

Einsatz ab Stufe 11

STAT-REG **Disula**

41Binomialedf 5:Binomialcdf

🖼 PoissonPdf

Approximation der Binomialverteilung durch die Poisson-Verteilung

Beispiel-Aufgabe

Ein Glücksrad mit 50 gleich großen Sektoren wird 50-mal gedreht. Bestimmen Sie die Wahrscheinlichkeit dafür, dass der Zeiger des Glücksrads auf einem bestimmten Sektor keinmal, genau einmal, genau zweimal, genau dreimal, mehr als dreimal stehen bleiben wird (1) gemäß Binomialansatz (2) mithilfe der Poisson-Näherung.

Verwendete Optionen des TI-30X Plus MultiView[™]:

Binomialpdf (-cdf) und Poissonpdf (-cdf) im DISTR-Menü (2nd data)

Erläuterung der Lösung

Der Vorgang kann modelliert werden mithilfe eines Binomialansatzes mit n = 50 und p =1/50; der Erwartungswert, Parameter für die Poisson-Approximation, ist also gleich μ = 50 · 1/50 = 1.

Da verschiedene Werte der Verteilung berechnet werden sollen, wird zunächst eine Liste L1 mit den Werten k = 0, 1, 2, 3 angelegt. Danach werden die Wahrscheinlichkeiten gemäß Binomialansatz in Liste L2 und die gemäß der Poisson-Näherung in Liste L3 gespeichert. Die Näherungswerte unterscheiden sich nur wenig von den exakt berechneten Wahrscheinlichkeiten des Binomialansatzes. Auch die Wahrscheinlichkeit für "mehr als dreimal", die mithilfe der jeweiligen kumulierten Wahrscheinlichkeiten berechnet wird, bestätigt dies:

 $P(X > 3) = 1 - P(X \le 3) = 1 - 0,9822 = 0,0178 \approx 1 - 0,9810 = 0,0190$

Image: state	STAT-REG DISH: 21Normalcdf 3:invNormal EBBinomialedf	eg I <u>spinotfrightsví</u> jí † X: SINGLE (húsií All 4	es I <mark>STITCTHCPIECTI</mark> † TRIALS=n=50 P(SUCCESS)=1∕50 ↓
ISTATUTETER SZEM *** ALIST: LIL2 L3 SAVE TO: L1 L2 L3 CALC	وی ایک (1995) ایک (1995) Hean = Hu = 1 XLIST: (1994) L2 L3 SAVE TO: L1 L2 (1993) CALC	B B ^{DEG} 0.3642 0.3679 1 0.3716 2 0.1858 0.0607 0.0839 3 0.0607 1(1)=0	
es TRIALS=n=50 P(SUCCESS)=0.02 X=3 CALC	BENDERFORMENT VALUE=0.982241919 Store: Solve Again Quit	LIONISSONISCI Hean=Hu=1 X=3 CALC	es Joff-Sconcen † VALUE=0.981011843 STORE: <u>100</u> Yztabed SOLVE AGAIN QUIT
Übungsaufgaben			

1. Berechnen Sie die folgenden Wahrscheinlichkeiten zur Beispiel-Aufgabe auch für den Fall, dass das Glücksrad mit 50 Sektoren 100-mal [200-mal] gedreht wird.

	k = 0	k = 1	k = 2	k = 3	k = 4	k > 4
Binomial (n = 100)						
Poisson						
Binomial (n = 200)						
Poisson						
2. Vergleichen Sie die Wahrscheinlichkeiten für die Anzahl der Sechsen beim 300-fachen Würfeln gemäß Binomial- und Poisson-Ansatz.						

	k = 0	k = 1	k = 2	k = 3	k = 4	k > 4
Binomial						
Poisson						

Bei einem **Würfelspiel** hat ein Spieler den Eindruck, dass Augenzahl "1" sehr oft auftritt, die auf der gegenüberliegenden Würfelfläche stehende "6" aber nur selten.

Daher vermutet er, dass die Wahrscheinlichkeit, eine "6" zu werfen, nur 10 % beträgt.

Betrachten Sie zunächst die Zufallsvariable

X: Anzahl der Sechsen mit der Erfolgswahrscheinlichkeit p = 0,1

Aufgabenstellung Teilaufgabe a)

- (1) Berechnen Sie die Wahrscheinlichkeit, mit diesem gezinkten Würfel in 120 Würfen genau 12-mal Augenzahl 6 zu werfen.
- (2) Berechnen Sie die Wahrscheinlichkeit, dass in 120 Würfen mindestens 20-mal Augenzahl 6 auftritt.
- (3) Berechnen Sie Erwartungswert μ und Standardabweichung σ für die Zufallsvariable X und bestimmen Sie die Wahrscheinlichkeit, dass die Anzahl der Sechsen um höchstens 2σ von μ abweicht.

Anfo	Anforderungsprofil und Punktwertung für Teilaufgabe a)			
(1)	Einzel-Wahrscheinlichkeit berechnen	2/10 Punkte]	
(2)	Intervall-Wahrscheinlichkeit berechnen	3/10 Punkte		
(3)	Erwartungswert und Standardabweichung berechnen und Intervall- Wahrscheinlichkeit bestimmen	5/10 Punkte		

Lösung Teilaufgabe a)

Nach Voraussetzung ist die Zufallsvariable binomialverteilt mit n = 100 und p = 0,1.

(1)
$$P(X = 12) = {\binom{120}{12}} \cdot 0, 1^{12} \cdot 0, 9^{108} \approx 0, 1205$$

(2) $P(X \ge 20) = \sum_{k=20}^{120} {\binom{120}{k}} \cdot 0, 1^k \cdot 0, 9^{120-k}$
 $= 1 - P(X \le 19) = 1 - \sum_{k=0}^{19} {\binom{120}{k}} \cdot 0, 1^k \cdot 0, 9^{120-k} \approx 0, 0158$

(3) $\mu = 120 \cdot 0, 1 = 12$, $\sigma = \sqrt{120 \cdot 0, 1 \cdot 0, 9} \approx 3,286$, $2\sigma \approx 6,572$

$$P(12-6,572 \le X \le 12+6,572) = P(6 \le X \le 18) = P(X \le 18) - P(X \le 5)$$
$$= \sum_{k=6}^{18} {120 \choose k} \cdot 0, 9^{120-k} \approx 0,9542$$

Beispiele zum Einsatz des TI-30X Plus MultiView[™]

Einsatz des TI-30X Plus MultiView[™]

Die Berechnung den Wahrscheinlichkeiten kann mithilfe der BERNOULLI-Formel erfolgen oder mithilfe der Optionen im Menü *stat-reg / distr* (2nd data):

(1)	Eingabe des Terms $ \begin{pmatrix} 120 \\ 12 \end{pmatrix} \cdot 0,1^{12} \cdot 0,9^{108} $	120 nCr 12*0.1 ¹²	42*0.1 ¹² *0.9 ¹⁰⁸ ∎	120 nCr 12*0.1 ¹ € 0.120545066
	Berechnen der Einzel- Wahrscheinlichkeit durch Eingabe von n, p, k	STAT-REG DESNS 27Normalcdf 3:invNormal EBBinomialPdf	strattensen *** JRIALS=n=120 t P(SUCCESS)=0.1 X=12 CALC CALC	SENTENTER SEA VALUE=0.120545067 STORE: SULVE AGAIN QUIT
(2)	Eingabe Summenterm, Komplementärregel $\sum_{k=0}^{19} {120 \choose k} \cdot 0, 1^k \cdot 0, 9^{120-k}$	[™] 319cd(4:▶Pfactor ₩Sum(19 Σ x=0 ⁰ 120 nCr 2*0►	€66 €0.1 [%] *0.9 ^{120-%})
	¹⁹ ∑(120 nCr %*0) ×=0 0.984233228	0.984233228 1-0.984233228 0.015766772	Eingabe Summenterm $\sum_{k=20}^{120} {\binom{120}{k}} \cdot 0, 1^k \cdot 0, 9^{120-k}$	¹²⁰ ∑ (120 nCr %*) ×=20 0.015766772
	Berechnen der Intervall-Wahrschein- lichkeit durch Eingabe von n, p, k	STAT-REG DISTA 3†invNormal 4:Binomialedf W Binomialcdf	BETTORHERING 000 TRIALS=n=120 † P(SUCCESS)=0.1 1 X=19 ■	⁰⁶⁶ I <mark>SPINGHERIGION</mark> † VALUE=0.984233228 STORE: INSYZTABCA SOLVE AGAIN QUIT
(3)	Berechnen der Standardabweichung	√120*0.1*0.9 3.286335345	Eingabe Summenterm	18 ∑x=6 ⁽¹²⁰ nCr %*0▶
	™ ~ ∑ (120 nCr %*0) ×=6 0.954246316	Berechnen der kumulierten Wahrscheinlichkeiten und Differenzbildung	Istration cond *** Istration cond † TRIALS=n=120 * P(SUCCESS)=0.1 * X=18 CALC	<mark>ВЕЛЛИНИЕ 1000 (1) (1000) (10</mark>
	ISPINOTECHICECHI TRIALS=n=120 P(SUCCESS)=0.1 X=5	ISFINITE CONCENT *** VALUE=0.016040334 † STORE: NO SZTERECH SULVE AGAIN QUIT	b-a 0.954246317	

Aufgabenstellung Teilaufgabe b)

Der Würfel wird mehrfach geworfen.

- (1) Wie oft muss der gezinkte Würfel mindestens geworfen werden, sodass die Wahrscheinlichkeit für das Ereignis *Mindestens einmal Augenzahl* 6 mindestens 99 % beträgt?
- (2) Bestimmen Sie die Wahrscheinlichkeit, dass Augenzahl 6 erst beim 6. Wurf fällt.

Anforderungsprofil und Punktwertung Teilaufgabe b)				
(1)	Lösungsansatz (Ungleichung) erläutern	3/9 Punkte		
(1)	Anzahl der Würfe berechnen (Lingleichung auflösen)	3/0 Punkto		
(י)				
(2)	Wahrscheinlichkeit bestimmen	3/9 Punkte		
` '				

Lösung Teilaufgabe b)

(1) Betrachtete Zufallsvariable X: Anzahl der Würfe mit Augenzahl 6; p = 0,1

Das Ereignis *Mindestens einmal Augenzahl 6 in n Würfen* ($X \ge 1$) ist das Gegenereignis zu Keinmal Augenzahl 6 in n Würfen (X = 0).

Für dieses Gegenereignis gilt: $P(X = 0) = 0,9^n$. Daher ist nach Komplementärregel:

$$P(X \ge 1) = 1 - P(X = 0) = 1 - 0.9^{n}$$

Hierfür soll gelten: $P(X \ge 1) \ge 0.99$.

Zu lösen ist also die Ungleichung: $1 - 0.9^n \ge 0.99$

d. h. 0,9ⁿ ≤ 0,01

Lösung durch Logarithmieren: $n \cdot \log(0,9) \le \log(0,01) \Leftrightarrow n \ge \log(0,01)/\log(0,9) \approx 43,7$

Hinweis 1: Das Ungleichheitszeichen in der Ungleichung kehrt sich um, weil beide Seiten durch eine negative Zahl dividiert werden.

Hinweis 2: Es spielt keine Rolle, welche Logarithmus-Funktion für das Logarithmieren der Ungleichung gewählt wird, weil die Quotienten immer gleich sind.

Der gezinkte Würfel muss mindestens 44-mal geworfen werden, damit die Wahrscheinlichkeit für mindestens einmal Augenzahl 6 mindestens 99 % beträgt.

(2) Wenn Augenzahl 6 erst beim 6. Wurf eintritt, bedeutet dies, dass 5-mal eine andere Augenzahl auftritt, bevor die Augenzahl 6 fällt.

Die Wahrscheinlichkeit hierfür beträgt

P(Augenzahl 6 erst beim 6. Wurf) = $0.9^5 \cdot 0.1 = 0.059049 \approx 5.9$ %.

Einsatz des TI-30X Plus MultiView[™]

- (1) Zur Bestimmung der notwendigen Anzahl *n* kann man im table-Menü eine Funktion *f* mit *f*(*n*) = P(X ≥ 1) = 1 0,9ⁿ definieren und dann in der Wertetabelle nachschauen, wann die Bedingung P(X ≥ 1) ≥ 0,99 erfüllt ist. Oder man löst die Ungleichung durch Logarithmieren und Umformung.
- (2) Zur Lösung dieser Teilaufgabe müssen die Wahrscheinlichkeiten gemäß Pfadmultiplikationsregel multipliziert werden.

(1)	Funktionsterm definieren, Wertetabelle durchsehen	EEDIT function	f(x)=1-0.9 [%] ∎	X f(X) 42 0.988027485 43 0.989224736 6.999302263 0.990302263 X=44 0.990302263
	Ungleichung durch Logarithmieren lösen (beliebige Basis)	1₀9(0.01)/1₀9(0) 43.70869065	ln(0.01)/1n(0.9) 43.70869065	
(2)	Wahrscheinlichkeiten multiplizieren	0.9 ⁵ *0.1 0.059049		

Eine perfekte Ergänzung! Die TI-SmartView™ Emulator-Software

Die TI-30X Pro MultiView[™] Emulator-Software geht über den Funktionsumfang des TI-30X Plus MultiView[™] hinaus und bietet Ihnen zusätzliche Möglichkeiten:

- » Anschauliche Erläuterung des Rechners vor der Klasse
- » Anzeige von Tastendruckfolgen
- » Bequeme Unterrichtsvorbereitung zu Hause (Skript-Erstellung)
- » Einsetzbar in Kombination mit Notebook/Beamer oder mit interaktiven Whiteboards.

Probieren Sie es aus. Die kostenlose Test-Version finden Sie auf den TI Webseiten.

Aufgabenstellung Teilaufgabe c)

Durch eine Versuchsreihe von 300 Würfen soll überprüft werden, ob die Wahrscheinlichkeit für Augenzahl 6 tatsächlich kleiner ist als 1/6.

- (1) Erläutern Sie, welche gegensätzlichen einseitigen Hypothesen in der Sachsituation betrachtet werden und welche der beiden möglichen Hypothesen getestet werden soll. Bestimmen Sie eine Entscheidungsregel zu diesem Test für $\alpha \le 0.05$.
- (2) Beschreiben Sie die Auswirkungen eines Fehlers 1. und 2. Art in der Sachsituation.
- (3) Erläutern Sie, welche Entscheidung gefällt wird, wenn in der Versuchsreihe 41-mal Augenzahl 6 auftritt.
- (4) Angenommen, die Wahrscheinlichkeit für Augenzahl 6 beträgt tatsächlich nur p = 0,1. Bestimmen Sie die Wahrscheinlichkeit für einen Fehler 2. Art.

Anfo	Anforderungsprofil und Punktwertung Teilaufgabe c)			
(1)	Angabe der beiden Hypothesen	3/17 Punkte		
(1)	Bestimmen der Entscheidungsregel	5/17 Punkte		
(2)	Beschreibung des Fehlers 1. und 2. Art im Sachzusammenhang	4/17 Punkte		
(3)	Erläuterung der Entscheidung	2/17 Punkte		
(4)	Berechnung der Wahrscheinlichkeit für einen Fehler 2. Art	3/17 Punkte		

Lösung Teilaufgabe c)

(1) Wenn man die Vermutung p < 1/6 "statistisch beweisen" möchte, muss man zeigen, dass das Versuchsergebnis nicht verträglich ist mit der gegenteiligen Hypothese $p \ge 1/6$.

Betrachtet werden also die beiden Hypothesen H₁: p < 1/6 und H₀: $p \ge 1/6$ sowie die Zufallsvariable X: *Anzahl der Sechsen in 300 Würfen*.

Für $p = \frac{1}{6}$ ist $\mu = 300 \cdot \frac{1}{6} = 50$ und $\sigma = \sqrt{300 \cdot \frac{1}{6} \cdot \frac{5}{6}} \approx 6,455 > 3$

Da die LAPLACE-Bedingung erfüllt ist, kann eine Entscheidungsregel mithilfe der Sigma-Regeln aufgestellt werden; dabei gilt: $P(X \le \mu - 1,64\sigma) \approx 0,05$

Für $p = \frac{1}{6}$ ist $\mu - 1,64\sigma \approx 39,4$.

Kontrollrechnung zur Sigma-Regel:

Für $p = \frac{1}{6}$ ist P(X ≤ 39) \approx 0,0486 < 0,05 und P(X ≤ 40) \approx 0,0675 > 0,05.

Für $p > \frac{1}{6}$ gilt erst recht: P(X ≤ 39) < 0,05.

Zu $\alpha \leq 0,05$ gehört der *kritische Wert k* = 39,5 und es ergeben sich

Annahmebereich A = {40, 41, 42, ..., 300} und Verwerfungsbereich V = {0, 1, ..., 38, 39}.

> *Entscheidungsregel*: Verwirf die Hypothese H₀: $p \ge 1/6$, falls bei 300 Würfen weniger als 40-mal Augenzahl 6 fällt.

(2) Ein Fehler 1. Art liegt vor, wenn das Versuchsergebnis im Verwerfungsbereich liegt, obwohl die Hypothese richtig ist. Im Sachzusammenhang bedeutet dies, dass für den Würfel gilt, dass *p* ≥ 1/6, aber zufällig treten weniger als 40 Sechsen in 300 Würfen auf. Der Würfel würde also als gezinkt angesehen, obwohl er es nicht ist.

Ein Fehler 2. Art liegt vor, wenn das Versuchsergebnis im Annahmebereich liegt, obwohl die Hypothese falsch ist. Im Sachzusammenhang bedeutet dies, dass für den Würfel gilt, dass p < 1/6, aber zufällig fällt in 300 Würfen mindestens 40-mal Augenzahl 6. Man hätte also keinen Anlass daran zu zweifeln, dass der Würfel in Ordnung ist, obwohl er tatsächlich gezinkt ist.

- (3) Da das Ergebnis 41-mal Augenzahl 6 im Annahmebereich der Hypothese p ≥ 1/6 liegt, hat man keinen Anlass, an der Richtigkeit der Hypothese zu zweifeln und geht davon aus, dass der Würfel in Ordnung ist.
- (4) Zu bestimmen ist die Wahrscheinlichkeit für den Annahmebereich unter der Voraussetzung, dass dem Versuch p = 0,1 zugrunde liegt:

$$P_{p=0,1} (X \ge 40) = 1 - P(X \le 39) \approx 0.038$$

Einsatz des TI-30X Plus MultiView[™]

- Mithilfe des Rechners kann der kritische Wert auch ohne Sigma-Regeln bestimmt werden. Dazu definiert man eine Funktion f gemäß der BERNOULLI-Formel mit variablem x-Wert, bis zu dem die Wahrscheinlichkeiten summiert werden sollen. Bei x = 40 wird die vorgegebene 5 %-Schranke überschritten, d. h. der kritische Wert liegt zwischen 39 und 40.
- (4) Die Wahrscheinlichkeit für den Fehler 2. Art kann mithilfe der kumulierten Binomialverteilung oder durch Summation mithilfe der BERNOULLI-Formel bestimmt werden.

(1)	Funktionsterm definieren, Wertetabelle durchsehen	■ 1:f(MEEdit function	$f(\alpha) = \sum_{x=0}^{\infty} (300 \text{ nC})$	f(x)=4/6) ^{300-x})∎
	1 f(1) 38 0.03404507 58 0.048571286 40 0.067527997 1=39 1			
(4)	Wahrscheinlichkeit berechnen mit kumulierter Binomialverteilung	ΒΕΙΠΟΗΠΟΝΟΣΟΙ ΦΕG ΤRIALS=n=300 † P(SUCCESS)=0.1 1 X=39	STATENTER SCALE VALUE=0.962196019 STORE: NONZTRADCH QUIT	1-y 0.037803981
	Wahrscheinlichkeit berechnen mit Summenterm	300 Σ(300 nCr %*► x=40	€66 40.1 [%] *0.9 ^{300-%})∎	∞ ~ ∑ (300 nCr %*) x=40 0.037803981

Aufgabenstellung Teilaufgabe d)

d) Zwei Spieler führen ein Glücksspiel mit einem LAPLACE-Würfel durch. Der Würfel wird dreimal geworfen. Was bei den drei Runden des Spiels als *Erfolg* angesehen wird, muss weiter unten geklärt werden.

Wenn 3-mal Erfolg eintritt, zahlt Spieler B an Spieler A 10 Münzen. Bei zwei Erfolgen zahlt Spieler B an Spieler A 3 Münzen; bei einem Erfolg zahlt Spieler A an Spieler B 1 Münze und wenn kein Erfolg eintritt, zahlt Spieler A an Spieler B 2 Münzen.

- (1) Stellen Sie ein Term für den Erwartungswert des Betrags auf, den Spieler A erhält oder zahlen muss.
- (2) Zeigen Sie, dass für die Erfolgswahrscheinlichkeit p gelten muss, dass p = 1/3 ist, damit dies eine faire Spielregel ist.
- (3) Geben Sie eine mögliche faire Spielregel an.

A set or a low we are a set if the set of D we let us or the set of T a if a set or a diverse the set of the s

Anto	Aniorderungsproni und Punktwertung Tellaulgabe d)				
(1)	Bestimmen der Wahrscheinlichkeitsverteilung	4/14 Punkte			
(1)	Bestimmen eines Terms für den Erwartungswert	5/14 Punkte			
(2)	Nachweis für p = 1/3	4/14 Punkte			
(3)	Beispiel einer fairen Spielregel	1/14 Punkte			

Lösung Teilaufgabe d)

(1) Für die Wahrscheinlichkeitsverteilung der Zufallsvariable X: Anzahl der Erfolge bei einem 3-stufigen BERNOULLI-Versuch mit Erfolgswahrscheinlichkeit p gilt:

X = k	P(X = k)		
0	1 · p³		
1	$3 \cdot p^2 \cdot (1-p)$		
2	$3 \cdot p \cdot (1-p)^2$		
3	1 · (1 − p)³		

Daher ergibt sich aus der Auszahlungsregel der Aufgabenstellung für den Erwartungswert der Zufallsvariablen Y: *Auszahlung aus der Sicht des Spielers A*

X = k	Y = a	P(Y = a) a · P(Y = a		
0	10	1 · p³	10 · p³	
1	3	$3 \cdot p^2 \cdot (1-p)$	$9 \cdot p^2 \cdot (1-p)$	
2	-1	$3 \cdot p \cdot (1-p)^2$	- 3 · p · (1 – p)²	
3	-2	1 · (1 − p)³	- 2 · (1 – p)³	

also: E(Y) = $10 \cdot p^3 + 9 \cdot p^2 \cdot (1-p) - 3 \cdot p \cdot (1-p)^2 - 2 \cdot (1-p)^3$

(2) Zu zeigen ist, dass sich für p = 1/3, also 1 - p = 2/3 ergibt, dass E(Y) = 0.

$$E(Y) = 10 \cdot \left(\frac{1}{3}\right)^3 + 9 \cdot \left(\frac{1}{3}\right)^2 \cdot \left(\frac{2}{3}\right)^1 - 3 \cdot \left(\frac{1}{3}\right)^1 \cdot \left(\frac{2}{3}\right)^2 - 2 \cdot \left(\frac{2}{3}\right)^3 = \frac{10}{27} + \frac{18}{27} - \frac{12}{27} - \frac{16}{27} = 0$$

(3) Ein Beispiel für eine solche faire Spielregel wäre: Ein Erfolg liegt vor, wenn der Würfel Augenzahl 5 oder 6 zeigt.

Einsatz des TI-30X Plus MultiView[™]

Der Taschenrechner kann bei der Lösung der Aufgabe hilfreich sein. Allerdings wäre ein TR *notwendig*, wenn die Aufgabenstellung (2) wie folgt abgeändert würde:

(2) Für welche Erfolgswahrscheinlichkeit p ist die o. a. Spielregel eine faire Spielregel?

Dann muss eine Funktion f mit der Variablen x definiert werden, mit deren Hilfe man die zu erwartende Auszahlung f(x) berechnet:

 $f(x) = 10 \cdot x^3 + 9 \cdot x^2 \cdot (1-x) - 3 \cdot x \cdot (1-x)^2 - 2 \cdot (1-x)^3$

Mithilfe der Wertetabelle findet man heraus, dass die Nullstelle der Funktion bei p \approx 1/3 liegt.

(2)	Funktionsterm definieren, in der Wertetabelle nach einer Nullstelle suchen	1:f(BEEdit function	f(x)=10x ³ +9x ² (■)	$f(x) = 4^2 - 2(1-x)^3$
	DEG DEG 1138 1 Start=0.33 1 Step=0.001 1 1110 1	1 f(1) 0.332 -0.011984 0.333 -0.002999 0.333 0.006004 1=0.334		

© 2015 Texas Instruments

Dieses Werk wurde in der Absicht erarbeitet, Lehrerinnen und Lehrern geeignete Materialien für den Unterricht an die Hand zu geben. Die Anfertigung einer notwendigen Anzahl von Fotokopien für den Einsatz in der Klasse, einer Lehrerfortbildung oder einem Seminar ist daher gestattet. Hierbei ist auf das Copyright von Texas Instruments hinzuweisen. Jede Verwertung in anderen als den genannten oder den gesetzlich zugelassenen Fällen ist ohne schriftliche Genehmigung von Texas Instruments nicht zulässig. Alle Warenzeichen sind Eigentum ihrer Inhaber.

Haben Sie Fragen zu Produkten von Texas Instruments? Oder sind Sie an weiteren Unterrichtsmaterialien oder einer Lehrerfortbildung interessiert? Gerne steht Ihnen auch unser Customer Service Center mit Rat und Tat zu Seite. Nehmen Sie mit uns Kontakt auf:

Customer Service Center TEXAS INSTRUMENTS **Tel.: 00 800-4 84 22 73 7 (Anruf kostenlos)** Fax: +49 (0)8161 80 3185 ti-cares@ti.com education.ti.com/deutschland education.ti.com/oesterreich education.ti.com/schweiz

Weitere Materialien finden Sie unter: www.ti-unterrichtsmaterialien.net

