Abir MARINA Jean-Louis BALAS

- Tin Texas Instruments

 T3 FRANCE
Coding with Python

Coding with Python

Coding with Python

Instructions		Python Instructions	Note
Opérations et fonctions mathématiques			
a^{b}		$a^{* *} \mathrm{~b}$	shortcut :
Quotient of Euclidian division of a by b		$a / / b$	
Rest of Euclidian division of a by b		a\%b	
\sqrt{a}	Need to be imported from the math library Shorcut :	from math import* sqrt(a)	Shorcut: sart()
π		from math import* pi	Shortcut:
$\sin (a)$ $\cos (a$		from math import* $\sin (a)$ from math import* $\cos (a)$	Shortcut:
round a with a b precision		round (a,b)	
Return the minimum between a et b		$\min (a, b)$	
Return the maximum between a et b		$\max (\mathrm{a}, \mathrm{b})$	
Saisie et affectation			
enter a		$\begin{aligned} & \mathrm{a}=\operatorname{int}(\text { input("a= ")) } \\ & \mathrm{a}=\text { float(input("a= ")) } \\ & \mathrm{a}=\operatorname{input("a=")} \end{aligned}$	To avoid
Displ		print (a)	
Assign a in the variable x		$\mathrm{x}=\mathrm{a}$	natural langage : $x \leftarrow a$ Shortcut:
Assign a in the variable x and b in the variable y		$x, y=a, b$	

Coding with Python

Coding with TI-Python

Coding with TI-Python

Maths library

Random library

CédITEUR : AIREDEF
Math module
Math Const Trig
1ife
2:pi
Modul

Exercise1: Function

Rewrite this algorithm as concisely as possible using a function.

MORMAL FIXEG AUTO REEL RAD MP EDIT MENU: [alpha] [f5]	[
PROGRAM : ACT1	
: Input "Xa ", A	
:Input "Ya ",B	
: Input " Xb ", C	
: Input "Yb ",	
$:(\mathrm{A}+\mathrm{C}) / 2 \rightarrow \mathrm{I}$	
$:(B+D) / 2 \rightarrow J$	
:Disp I, J	
:	
:	

Exercise 2 : Conditional statement

A photo printing website offers prints at $0.11 €$ each. The price is reduced to $0.11 €$ each for orders of more than 200 photos.

Create an algorithm which gives the total price for a number n of prints.

Exercise 3 : Closed loop

The population of a village is 2300 today. As the village is growing, its population increases each year by 150 inahbitants.

Design an algorithm which gives the number of inhabitants of this village in n years from today.

Exercise 4 : Open loop

On the first January 2018 the price of a new car was $20000 €$. Each year the value of the car diminishes by 20%.

Write an algorithm which calculates the number of years which takes the value of the car to below $2000 €$.

Exercise 5 : the hare and the tortoise

One part of the hare and tortoise game goes like this: The distance to run is 6 squares. The die is thrown and if a six comes up the hare advances 6 squares, otherwise the tortoise goes forward one square.

1) Programme a simulation of this game using Python.
2) Write a piece of script which returns the number of wins of the hare and the tortoise.

Exercise 6 : Primeness test

A prime number is a whole number with exactly two distinct positive divisors (which are 1 and itself). Contrary to this a number which is the non zero product of two distinct whole numbers, neither of which is 1 is said to be composite.

A test for primeness is an algorithm which reveals whether a whole number is prime. The simplest test is the following: to test N , one verifies if it is divisible by one of the whole numbers between 2 and $\mathrm{N}-1$. If the response is negative then N is prime, otherwise it is composite.

Write an algorithm which tests for primeness and returns a boolean. Use the instruction assert ($\mathrm{n}>=2$) (found in the instruction catalogue) to verify the hypothesis made in the argument.

Exercise 7 : Approximation of $\sqrt{2}$ by sweeping

Considerate the function $f: x \mapsto x^{2}$ define on the interval [1;2].

1) Construct the table of variations of the function f on $[1 ; 2]$. Give the minimum and maximum on this interval.
2) Is this table coherent with this sentence : the equation $f(x)=2$ has an only solution on the interval [1;2] wich is $\sqrt{2}$?
3) Write a function « balayage(epsilon) » wich return a couple (a, b), with a and b such as: $a \leqslant \sqrt{2} \leqslant b$ et $b-a=e p s i l o n$. For example balayage(0.1) must display : $(1.4,1.5)$

Exercise 8 : Pythagorean Triplet

1) In order to verify automatically whether or not triples of consecutive whole numbers are Pythagorean, the above code was written.

Use the code to test the triples $(3,4,5)$ and $(4,5,6)$.

2) a) Create in the same document and following the function " rectangle " a function "triplet". This should accept a whole number N as argument and test all the consecutive triplets from ($1,2,3$) up to ($\mathrm{N}, \mathrm{N}+1, \mathrm{~N}+2$) and use the function "rectangle".
b) Test the programme for $\mathrm{N}=100$ then bigger values. What conjecture can you make?
3) Proof :

Let a be the smallest of the consecutive whole number Pythagorean Triples.
a) Construct and simplify the equation $a^{2}+(a+1)^{2}=(a+2)^{2}$

Show that validating the conjecture is the same as solving the equation $a^{2}-2 a-3=0$.
b) Prove that $(a-3)(a+1)=a^{2}-2 a-3$.
c) Solve the equation and write down your conclusions.
7) Write a function that search Pythagorean triplets

Exercise 1 : Function

TI Basic	NORMAL FIXE2 RUTO REEL RAD MP ÉDIT MENU: [α 1pha.] [f5] PROGRAM: ACT1 :Effécran! :Fixe 2 :Input "Xa ", A :Input "Ya ",B :Input "Xb ", C :Input "Yb ",D $:(\mathrm{A}+\mathrm{C}) / 2 \rightarrow \mathrm{I}$ $:(B+D) / 2 \rightarrow J$:Effécran	:Output (5,5," I Milieu de [AB] :") : Output (6,10," (") : Output $(6,11, I)$: Output $(6,17, " ; ")$: Output $(6,19, \mathrm{~J})$:Output (6,23,")")			
Python			PYTHON SHELL >>> milieu(2,4,4,6) (3.0, 5.0) $\ggg 1$ Fns...\|a A \# Outils	Éditer	Script

Exercise 2 : Conditional statement

TI Basic	NORMAL FIXE2 AUTO REEL RAD MP ÉDIT MENU: [a.1pha.] [f5] PROGRAM: ACT2 :Effécranl :Fixe 2 : Input "Number ",N : If $\mathrm{N}<200$: Then $: 0.11 * N \rightarrow M$:Else $: 0.08 * N \rightarrow M$: End	```:Output(5,5,"Price to pay : ") :Output (5,19,M)```	NORMAL FIXEZ AUTO RÉEL RAD MP Number 100 \qquad Fait Price to pay : 11.00	
Python			PYTHON SHELL >>> photo(165) 18.15 >> photo(314) 25.12 >> \| Fns....a A \# Outils\|éditer	Script

Exercise 3 : Closed loop

$\begin{gathered} \mathrm{TI} \\ \text { Basic } \end{gathered}$		
Python		

Exercise 4 : Open loop

TI Basic	NORMAL FIXE2 futo RÉEL RAD MP ÉDIT MENU: [a.1pha.] [f5] PROGRAM: ACT4 :Effécran :Fixe 2 :Input "Price ? ",V : $0 \rightarrow \mathrm{~N}$: While $V \geq 2000$: 0.8*V $\rightarrow V$ $: 1+N \rightarrow N$: End : Disp N	
Python		PYTHON SHELL >> prix(20000) 11 $\ggg 1$

Exercise 5 : The hare and the tortoise

TI Basic		```:If N=6 :Then :Disp "The Turtle wins" :Else :Disp "The hare wins" : End :Fixe 9!```		
Python	```EDITEUR : TORTUE LIGNE DU SCRIPT 0002 from random import randint def course(): de=0 case=0 while de<6 and case<6: de=randint(1,6) case=case+1 print (de) if case==6: \|return "la tortue a gagn```		PYTHON SHELL >> course() 4 3 3 3 2 5 4 4 la tortue a gagné' >> I Fns....a A \# Outils\|Éditer	Script

Exercise 6 : Primeness test

TI Basic					
Python		PYTHON SHELL >>> premier(9) False >>> premier(19) True $\ggg 1$ Fns...\|a A \#	Outils	ÉCiter	Script

Exercise 7 : Approximation of $\sqrt{2}$ by sweeping

$\begin{gathered} \mathrm{TI} \\ \text { Basic } \end{gathered}$		PROGRAM: ACT7 : $1 \rightarrow X$:Input "EPSILON ?", E : While $X^{2}<2$: $\mathrm{X}+\mathrm{E} \rightarrow \mathrm{X}$: End :Output (5,3,"[X-є,X]:") : Output (5,13,X-E) : Output (5,17,",") : Output $(5,19, \mathrm{X})$ ■	
Python			

Exercise 8 : Pythagorician Triplet

$\begin{gathered} \mathrm{TI} \\ \text { Basic } \end{gathered}$	```PROGRAM: ACT61 :Prompt N \(: \operatorname{For}(\mathrm{I}, 1, \mathrm{~N})\) : If \(I^{2}+(I+1)^{2}=(I+2)^{2}\) :Then \(:\{\mathrm{I}, \mathrm{I}+1, \mathrm{I}+2\} \rightarrow \mathrm{L}_{1}\) : Disp L1 : Wait 2 : End : End```	NORMAL FIXE9 RUTO REEL RAD MP EDIT MENU: [a.1pha.] [f5] PROGRAM: ACT6 :Effécran : Prompt A : If $A^{2}+(A+1)^{2}=(A+2)^{2}$:Then : Disp "YES" :Else : Disp "NO" : End	
Python			

