
Optimizing the sheep pen

© 2010 Texas Instruments Education Technology SheepPenv4BG

Optimizing the sheep pen
Introduction
This activity is about optimization – finding the best (or at least a good) solution to a problem
that requires a function to be maximised. The particular problem tackled here is to maximise the
area of an isosceles triangle. TI-Nspire offers a wide range of possible approaches to such
problems and teachers who work through the following account will find a wealth of innovative
ideas that can be adapted for use in the classroom.

This account was first published in Inspiring Maths in the classroom by Alison Clark-Wilson and
Adrian Oldknow. The full text of that booklet is available for download from
http://education.ti.com/educationportal/sites/UK/nonProductMulti/case_study.html?bid=2.

Resources
These notes, written primarily for teachers, are accompanied by a TI-Nspire document,
SheepPen.tns. This includes all the pages and that are referred to and pictured in the text. This
file is best used on TI-Nspire software, rather than on the handheld.

The problem
A Northumberland sheep farmer has two
pieces of fencing, each 10m long, which she
wants to fix to a straight stone wall to make
a triangular sheep pen whose area is as big
as possible. We can make a “scale model”
by using, say, 1cm to represent 1m.

We will look at a variety of different ways
using TI-Nspire in which we can approach
such a problem: numeric, graphic, symbolic,
geometric, statistic, algorithmic and
synoptic.

Seven approaches

Numeric
For the numeric approach we will illustrate
the uses of both Calculator and Lists &
Spreadsheet pages, as well as storing
values in variables.

Optimizing the sheep pen

© 2010 Texas Instruments Education Technology SheepPenv4BG

In many cases it is more helpful to use a
Lists & Spreadsheet page as this will cause
values to be recomputed when a value or
formula is changed. We define the column
A to hold the variable ht as a list defined to
be the sequence of numbers n starting from
n=1 and going on for 9 terms.

If we make a little change in the definition of
the variable in column A we can make it
much easier to “zoom in” on any particular
value that seems interesting.

Here the variable hz is defined by the
recurrence formula:

u(n) = u(n-1) + 0.01
 with u(1) = 7 and n=2,3,4,....,10

Column B now holds the list of values of the
variable az defined in terms of hz.

Graphic
We can generate a scatterplot from the
numerical data in any pair of lists of the
same length. These can be generated in
either a Calculator or a Lists & Spreadsheet
page, but we’ll need a lot more data points
than just 10.

Here we use a Data & Statistics page to
draw the scattergraph of the list hz
extended to 100 values.

hz:=seqn(u(n-1)+0.1,{0},100) is the horizontal variable and the list az:=hz*√(100-hz2) is the
vertical variable.
In the Data & Statistics page there is an Analyze icon which brings down a menu including
Plot Function – so we can draw the graph of f1(x) = x*√(100-x2) and show, of course, that it
goes through all the data points.

So that leads us into the main way of
graphing i.e. using a Graphs page. In the
Data & Statistics page we already defined
the function f1(x) so it’s there waiting to be
drawn. If you prefer you can start a New
Problem so that all the earlier definitions are
“forgotten” and you can enter your function
as a new definition for f1(x).

You can use Windows Setting to control the
scales on each axis and, with a right click

Optimizing the sheep pen

© 2010 Texas Instruments Education Technology SheepPenv4BG

on the graph, you can define its Attributes, and choose the layout for the equation. Using Graph
Trace you drag a point along the curve, and when it reaches a maximum (or minimum) it shows
an “M” symbol, allowing you to press Enter and capture the point.

So if the Graphs application can determine a maximum, it suggests that the Calculator
application should also be able to do so! The required function is called “nfMax” which will find, if
it can, a local maximum for a function f(x). The TI-Nspire reference guide lists three forms:

1. nfMax(Expr, Var) ⇒ value
2. nfMax(Expr, Var, lowBound) ⇒ value
3. nfMax(Expr, Var, lowBound, upBound) ⇒ value

We can use either the explicit form of the Expr: x*√(100-x2), or its stored function form: f1(x). In
either case the Var in question is called x. But our function is not a very well behaved one! It is
not defined for x>10 or x<-10. There is a minimum at around (-7.07,50), an inflection at (0,0) and
a maximum at around (7.07,50) – but the behaviour at (-10,0) and (10,0) is distinctly nasty!

Of course negative values of x make no
sense for the actual triangle problem we
started with, but we haven’t told the
software that we don’t want to consider
negative values of x. As you see from the
screen shown, neither of the first or second
forms comes up with a solution, whereas
the third one does!

One very important feature about powerful
mathematical software is that it allows us to
see various representations of the same bit
of mathematics and see how they inter-
relate. TI-Nspire layout allows us to mix
different types of representations on the
same page. In this screenshot this is done
from within a Graphs page by asking for a
Function Table.

So now we have a nice way of showing at
the same time a numeric representation in
the form of the table, together with a graphic
representation in the form of the curve and
a symbolic representation in the form of the
algebraic expression for the function f1(x)
whose graph and table are displayed.

Symbolic (optional: CAS)

TI-Nspire is available in two versions known as CAS and non-CAS. “CAS” stands for “Computer
Algebra System” and implies that the software has algorithms for symbolic manipulations in
algebra, including differential and integral calculus. So here is a little glimpse into the CAS world
to show just how powerful such tools are.

Optimizing the sheep pen

© 2010 Texas Instruments Education Technology SheepPenv4BG

The second line shows a symbolic
derivative, and the third shows it
manipulated algebraically to a proper
fraction. So we can see that the
denominator can be zero (at x= -10 or x=
10) confirming the infinite slope of the
function at (-10,0) and (10,0). The fourth
line shows the extraction of the numerator,
and the fifth shows the zeros of the resulting
quadratic function. Finally the sixth line
shows the evaluation of the function a(x) at
this list of zeros, returning a list of the
corresponding values.

Geometric

As this was, after all, a problem posed geometrically, it should be one which we can solve
geometrically – and maybe that will also give us a greater insight into the shape of the optimum
sheep pen – something which the numbers, lists, graphs, tables and symbols have so far failed
to reveal!

The chosen diagram starts with a section of
the “wall” XX’; a segment joining two points.
The fixed point D is the midpoint of XX’.
The line through D perpendicular to XX’ is
drawn and the slideable point B created on
it. So in terms our problem we now have
the point B as our independent variable,
and its domain is the perpendicular bisector
of XX’. The number 10 is entered as text on
the screen, and used with the Compass tool
and point B to construct the circle centre B
radius 10 cm.

(Of course the actual length in cm will depend on the size of display used!) This circle may or
may not intersect the segment XX’, but where it does so we label the points A,B. Finally we
construct the triangle ABC and change its attributes to fill it in. We can then measure the
distance BD (i.e. the height x) and the area ABC. As we slide B up and down these
measurements will change and we can find a good approximation to the optimum shape.

Because we have a geometric view now, we
can see – and check – that AD, DC and DB
are all more or less equal and so estimate
the angles in the figure. If we now reflect
ABC in XX’ we get the triangle AB’C, which
together with ABC makes a rhombus ABCB’
of side 10cm. So the optimum configuration
will occur when ABC is half a square of side
10 i.e. with an area of 50 cm2.

Optimizing the sheep pen

© 2010 Texas Instruments Education Technology SheepPenv4BG

There are other interesting ways in which we can represent graphically data collected from
measurements and calculations on a Geometry page. In the first example we will use a
geometric approach to making our own graph dynamically. First we hide some of the “clutter” we
have acquired such as the circle and AB’C. Using the text value 1 and the point D as origin we
can use Compass to create a unit circle around D, and its intersections E,F with our new “axes”
DX and DB. Creating vectors DE and DF gives us use of an important geometric tool called
Measurement Transfer. The length BD lies between 0 and 10 and so we can happily Transfer it
to vector DE to produce the point G on the x-axis. However the area ranges between 0 and 50
which means we need to scale it before plotting on the y-axis. So we can enter the scaling
formula e.g. “y/10” as text, and then Calculate the formula using the value of the area to
substitute for y. Then the resulting, scaled, value can be transferred to the vector DF to create
the point H. As B slides so the points G and H move along their respective axes. We just have
to create perpendiculars to the axes through G and H to meet at the point J, which is the
graphical representation of the point whose coordinates are given by the height and area of the
triangle ABC.

So as B slides, J now traces out a path that
is the graph of the area as a function of
height. The set of all positions of a point
such as J is called a locus, so we just need
to construct the locus of J as a function of B
to get the curve shown. The attributes of
GJ, HJ and the locus have been changed to
help with clarity. Since our construction
allows B to pass below XX’ we have
acquired a spurious branch of the locus.
You might like to think how our construction
could have been started differently to
ensure that B is always “above” XX’.

Statistic
An alternative way to make a graph from the geometric measurements is to capture them into
lists in a spreadsheet. First we copy the geometric construction into a new Geometry page,
which we divide vertically to include a Lists & Spreadsheets area as well. We hide unnecessary
parts of the construction leaving just the “bare bones” of a resizeable triangle controlled by the
point B, and the two measurements: length BD and area ABC. We now want to store the two
measurements into variables. So using a right click with the length selected we can select the
Store option and type in a name, like “height” to use for this measurement. Similarly we can
store the other measurement in the variable “area”.

Now we can set up the spreadsheet to
collect data automatically from these lists
when we start to drag the point B about.
The lists in columns A and B have been
given the names xh and ya. The formula
entered for xh uses the Data Capture option
and then the Automated Data selection. You
edit the formula xh:=capture(Var,1) to
replace Var with height, and similarly set up
ya as the list formed by capturing area.
Now as you drag the point B in the
Geometry window so the data lists grow in
the Lists & Spreadsheet window.

Optimizing the sheep pen

© 2010 Texas Instruments Education Technology SheepPenv4BG

All we now need is to plot the data as a
scatterplot, which we can do either in a Data
& Statistics window or a Graphs window –
or, as in this screenshot, both.

As a final exercise in this section we shall
show how to fit a particular model to the
scatterplot data.

A new window is split between Lists &
Spreadsheet and Graphs & Geometry. If
we select Stat Calculations in the left hand
window we can specify the two lists to use
(xh and ya), and the name of the function
(f2) into which the equation will be stored.
Here we see that a cubic fit has quite a
close correlation, but doesn’t fit close to
(0,0) or (10,0) – which isn’t surprising!

Algorithmic
TI-Nspire includes a powerful programming
language. Programs and functions can be
defined by inserting a Program Editor area
and choosing to build a New Program.
Here our program is given the name
algorithm and does not pass any
arguments. This means it can be called, for
example from a Calculator page by entering
“algorithm()”. The Editor opens up with 3
lines already completed:

Define algorithm()=

Prgm

EndPrgm

We can enter our program in the gap provided, using assignment statements such as a:=3,
I/O statements such as Disp b, and structures such as For, While, If etc. Variables used in a
program can either be declared to be Local, or otherwise the program will set or reset variable
values which can be accessed after the program has run.

Once you have entered the program you can select Check Syntax & Store and, hopefully, you
get a “success” message.

Optimizing the sheep pen

© 2010 Texas Instruments Education Technology SheepPenv4BG

Once the program has been successfully entered you can use its name from another TI-Nspire
page such as Calculator, or use it within another program definition. To illustrate the point we’ll
define a new program that computes the area of a triangle of given height, and then use it in a
program to compute lists of heights and areas.

The program triarea(x) has been defined
using a few more lines than strictly
necessary to make the point that this
structure allows us to define quite
complicated functions, for example,
returning different expressions for different
ranges of input variable x. When we call the
program from a Calculator area, we just put
in a value (constant or list) for the variable x.
Now that the function triarea() has been
defined we can make use of it in the
program called sheep(). In order to use this
you specify the value of n, which will be the
number of data points generated. The
program uses both local variables (r, h, a)
and also global variables (hlist, rlist). The
square brackets notation: hlist[r] means the
r-th element of the list hlist. So when the
program has been successfully stored we
can run it with a value for n such as 100 –
and then we generate the lists hlist and alist
“as a by-product” of the program. These
lists can then be used within other areas of
TI-Nspire such as Lists & Spreadsheet or
Graphs.

Synoptic
One of the key features of TI-Nspire is that it can be used to build up a document consisting of
pages each of which can be divided into 1, 2, 3 or 4 different areas. The pages can be organised
within sections called Problems – so that the final saved “tns” file is really a book made up from
components which are mixtures of:

• Calculator

• Graphs

• Geometry

• Lists & Spreadsheet

• Notes

• Data & Statistics

• Program Editor.

Including Notes areas and/or pages such as
the example shown here, allows you to
describe aspects of your problem: your
strategy, suppositions, conclusions, next
steps etc.

