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Optimizing the sheep pen 
Introduction 
This activity is about optimization – finding the best (or at least a good) solution to a problem 
that requires a function to be maximised. The particular problem tackled here is to maximise the 
area of an isosceles triangle. TI-Nspire offers a wide range of possible approaches to such 
problems and teachers who work through the following account will find a wealth of innovative 
ideas that can be adapted for use in the classroom. 
 
This account was first published in Inspiring Maths in the classroom by Alison Clark-Wilson and 
Adrian Oldknow. The full text of that booklet is available for download from 
http://education.ti.com/educationportal/sites/UK/nonProductMulti/case_study.html?bid=2. 
 
Resources 
These notes, written primarily for teachers, are accompanied by a TI-Nspire document, 
SheepPen.tns. This includes all the pages and that are referred to and pictured in the text. This 
file is best used on TI-Nspire software, rather than on the handheld. 
 
The problem 
A Northumberland sheep farmer has two 
pieces of fencing, each 10m long, which she 
wants to fix to a straight stone wall to make 
a triangular sheep pen whose area is as big 
as possible.  We can make a “scale model” 
by using, say, 1cm to represent 1m. 
 

We will look at a variety of different ways 
using TI-Nspire in which we can approach 
such a problem: numeric, graphic, symbolic, 
geometric, statistic, algorithmic and 
synoptic. 
 

 

Seven approaches 

Numeric 
For the numeric approach we will illustrate 
the uses of both Calculator and Lists & 
Spreadsheet pages, as well as storing 
values in variables. 
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In many cases it is more helpful to use a 
Lists & Spreadsheet page as this will cause 
values to be recomputed when a value or 
formula is changed.  We define the column 
A to hold the variable ht as a list defined to 
be the sequence of numbers n starting from 
n=1 and going on for 9 terms.   

 

 
 

If we make a little change in the definition of 
the variable in column A we can make it 
much easier to “zoom in” on any particular 
value that seems interesting. 

Here the variable hz is defined by the 
recurrence formula: 

u(n) = u(n-1) + 0.01  
 with u(1) = 7 and n=2,3,4,....,10 

Column B now holds the list of values of the 
variable az defined in terms of hz.    

 

Graphic 
We can generate a scatterplot from the 
numerical data in any pair of lists of the 
same length. These can be generated in 
either a Calculator or a Lists & Spreadsheet 
page, but we’ll need a lot more data points 
than just 10. 

Here we use a Data & Statistics page to 
draw the scattergraph of the list hz 
extended to 100 values.   

 
hz:=seqn(u(n-1)+0.1,{0},100) is the horizontal variable and the list az:=hz*√(100-hz2) is the 
vertical variable.  
In the Data & Statistics page there is an Analyze icon which brings down a menu including 
Plot Function – so we can draw the graph of f1(x) = x*√(100-x2) and show, of course, that it 
goes through all the data points. 

So that leads us into the main way of 
graphing i.e. using a Graphs page.  In the 
Data & Statistics page we already defined 
the function f1(x) so it’s there waiting to be 
drawn.  If you prefer you can start a New 
Problem so that all the earlier definitions are 
“forgotten” and you can enter your function 
as a new definition for f1(x).  

You can use Windows Setting to control the 
scales on each axis and, with a right click  
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on the graph, you can define its Attributes, and choose the layout for the equation.  Using Graph 
Trace you drag a point along the curve, and when it reaches a maximum (or minimum) it shows 
an “M” symbol, allowing you to press Enter and capture the point. 

So if the Graphs application can determine a maximum, it suggests that the Calculator 
application should also be able to do so!  The required function is called “nfMax” which will find, if 
it can, a local maximum for a function f(x).  The TI-Nspire reference guide lists three forms: 

1. nfMax(Expr, Var) ⇒ value 
2. nfMax(Expr, Var, lowBound) ⇒ value 
3. nfMax(Expr, Var, lowBound, upBound) ⇒ value  

We can use either the explicit form of the Expr: x*√(100-x2), or its stored function form: f1(x). In 
either case the Var in question is called x. But our function is not a very well behaved one!  It is 
not defined for x>10 or x<-10.  There is a minimum at around (-7.07,50), an inflection at (0,0) and 
a maximum at around (7.07,50) – but the behaviour at (-10,0) and (10,0) is distinctly nasty! 

Of course negative values of x make no 
sense for the actual triangle problem we 
started with, but we haven’t told the 
software that we don’t want to consider 
negative values of x.  As you see from the 
screen shown, neither of the first or second 
forms comes up with a solution, whereas 
the third one does!  

One very important feature about powerful 
mathematical software is that it allows us to 
see various representations of the same bit 
of mathematics and see how they inter-
relate.  TI-Nspire layout allows us to mix 
different types of representations on the 
same page.  In this screenshot this is done 
from within a Graphs page by asking for a 
Function Table. 

So now we have a nice way of showing at 
the same time a numeric representation in 
the form of the table, together with a graphic 
representation in the form of the curve and 
a symbolic representation in the form of the 
algebraic expression for the function f1(x) 
whose graph and table are displayed. 

 

 
 

 
 
Symbolic (optional: CAS) 

TI-Nspire is available in two versions known as CAS and non-CAS.  “CAS” stands for “Computer 
Algebra System” and implies that the software has algorithms for symbolic manipulations in 
algebra, including differential and integral calculus.  So here is a little glimpse into the CAS world 
to show just how powerful such tools are.   
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The second line shows a symbolic 
derivative, and the third shows it 
manipulated algebraically to a proper 
fraction.  So we can see that the 
denominator can be zero (at x= -10 or x= 
10) confirming the infinite slope of the 
function at (-10,0) and (10,0).  The fourth 
line shows the extraction of the numerator, 
and the fifth shows the zeros of the resulting 
quadratic function.  Finally the sixth line 
shows the evaluation of the function a(x) at 
this list of zeros, returning a list of the 
corresponding values. 

 

 

Geometric 
 
As this was, after all, a problem posed geometrically, it should be one which we can solve 
geometrically – and maybe that will also give us a greater insight into the shape of the optimum 
sheep pen – something which the numbers, lists, graphs, tables and symbols have so far failed 
to reveal!   

The chosen diagram starts with a section of 
the “wall” XX’; a segment joining two points.  
The fixed point D is the midpoint of XX’.  
The line through D perpendicular to XX’ is 
drawn and the slideable point B created on 
it.  So in terms our problem we now have 
the point B as our independent variable, 
and its domain is the perpendicular bisector 
of XX’.  The number 10 is entered as text on 
the screen, and used with the Compass tool 
and point B to construct the circle centre B 
radius 10 cm.   

 
(Of course the actual length in cm will depend on the size of display used!) This circle may or 
may not intersect the segment XX’, but where it does so we label the points A,B. Finally we 
construct the triangle ABC and change its attributes to fill it in.  We can then measure the 
distance BD (i.e. the height x) and the area ABC.  As we slide B up and down these 
measurements will change and we can find a good approximation to the optimum shape. 
 

Because we have a geometric view now, we 
can see – and check – that AD, DC and DB 
are all more or less equal and so estimate 
the angles in the figure.  If we now reflect 
ABC in XX’ we get the triangle AB’C, which 
together with ABC makes a rhombus ABCB’ 
of side 10cm.  So the optimum configuration 
will occur when ABC is half a square of side 
10 i.e. with an area of 50 cm2. 
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There are other interesting ways in which we can represent graphically data collected from 
measurements and calculations on a Geometry page.  In the first example we will use a 
geometric approach to making our own graph dynamically.  First we hide some of the “clutter” we 
have acquired such as the circle and AB’C.  Using the text value 1 and the point D as origin we 
can use Compass to create a unit circle around D, and its intersections E,F with our new “axes” 
DX and DB.  Creating vectors DE and DF gives us use of an important geometric tool called 
Measurement Transfer.  The length BD lies between 0 and 10 and so we can happily Transfer it 
to vector DE to produce the point G on the x-axis. However the area ranges between 0 and 50 
which means we need to scale it before plotting on the y-axis.  So we can enter the scaling 
formula e.g. “y/10” as text, and then Calculate the formula using the value of the area to 
substitute for y.  Then the resulting, scaled, value can be transferred to the vector DF to create 
the point H.  As B slides so the points G and H move along their respective axes.  We just have 
to create perpendiculars to the axes through G and H to meet at the point J, which is the 
graphical representation of the point whose coordinates are given by the height and area of the 
triangle ABC.   

So as B slides, J now traces out a path that 
is the graph of the area as a function of 
height.  The set of all positions of a point 
such as J is called a locus, so we just need 
to construct the locus of J as a function of B 
to get the curve shown.  The attributes of 
GJ, HJ and the locus have been changed to 
help with clarity.  Since our construction 
allows B to pass below XX’ we have 
acquired a spurious branch of the locus.  
You might like to think how our construction 
could have been started differently to 
ensure that B is always “above” XX’. 

 
 

 

Statistic 
An alternative way to make a graph from the geometric measurements is to capture them into 
lists in a spreadsheet.  First we copy the geometric construction into a new Geometry page, 
which we divide vertically to include a Lists & Spreadsheets area as well.  We hide unnecessary 
parts of the construction leaving just the “bare bones” of a resizeable triangle controlled by the 
point B, and the two measurements: length BD and area ABC.  We now want to store the two 
measurements into variables.  So using a right click with the length selected we can select the 
Store option and type in a name, like “height” to use for this measurement.  Similarly we can 
store the other measurement in the variable “area”.  

Now we can set up the spreadsheet to 
collect data automatically from these lists 
when we start to drag the point B about.  
The lists in columns A and B have been 
given the names xh and ya.   The formula 
entered for xh uses the Data Capture option 
and then the Automated Data selection. You 
edit the formula xh:=capture(Var,1) to 
replace Var with height, and similarly set up 
ya as the list formed by capturing area.  
Now as you drag the point B in the 
Geometry window so the data lists grow in 
the Lists & Spreadsheet window. 

 

 
 



Optimizing the sheep pen 
 

 
© 2010 Texas Instruments Education Technology  SheepPenv4BG 
 

All we now need is to plot the data as a 
scatterplot, which we can do either in a Data 
& Statistics window or a Graphs window – 
or, as in this screenshot, both. 

 

 
 

As a final exercise in this section we shall 
show how to fit a particular model to the 
scatterplot data.   

A new window is split between Lists & 
Spreadsheet and Graphs & Geometry.  If 
we select Stat Calculations in the left hand 
window we can specify the two lists to use 
(xh and ya), and the name of the function 
(f2) into which the equation will be stored.  
Here we see that a cubic fit has quite a 
close correlation, but doesn’t fit close to 
(0,0) or (10,0) – which isn’t surprising! 

 

 

Algorithmic 
TI-Nspire includes a powerful programming 
language.  Programs and functions can be 
defined by inserting a Program Editor area 
and choosing to build a New Program.  
Here our program is given the name 
algorithm and does not pass any 
arguments. This means it can be called, for 
example from a Calculator page by entering 
“algorithm()”.  The Editor opens up with 3 
lines already completed: 

Define algorithm()= 

Prgm 

 

EndPrgm 

 
 
 
 
 

 

We can enter our program in the gap provided, using assignment statements such as a:=3,  
I/O statements such as Disp b, and structures such as For, While, If etc.  Variables used in a 
program can either be declared to be Local, or otherwise the program will set or reset variable 
values which can be accessed after the program has run.   

Once you have entered the program you can select Check Syntax & Store and, hopefully, you 
get a “success” message.   
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Once the program has been successfully entered you can use its name from another TI-Nspire 
page such as Calculator, or use it within another program definition.  To illustrate the point we’ll 
define a new program that computes the area of a triangle of given height, and then use it in a 
program to compute lists of heights and areas. 

The program triarea(x) has been defined 
using a few more lines than strictly 
necessary to make the point that this 
structure allows us to define quite 
complicated functions, for example, 
returning different expressions for different 
ranges of input variable x.  When we call the 
program from a Calculator area, we just put 
in a value (constant or list) for the variable x. 
Now that the function triarea() has been 
defined we can make use of it in the 
program called sheep().  In order to use this 
you specify the value of n, which will be the 
number of data points generated.  The 
program uses both local variables (r, h, a) 
and also global variables (hlist, rlist).  The 
square brackets notation: hlist[r] means the 
r-th element of the list hlist.  So when the 
program has been successfully stored we 
can run it with a value for n such as 100 – 
and then we generate the lists hlist and alist 
“as a by-product” of the program.  These 
lists can then be used within other areas of 
TI-Nspire such as Lists & Spreadsheet or 
Graphs. 

 

 
 

 

Synoptic 
One of the key features of TI-Nspire is that it can be used to build up a document consisting of 
pages each of which can be divided into 1, 2, 3 or 4 different areas. The pages can be organised 
within sections called Problems – so that the final saved “tns” file is really a book made up from 
components which are mixtures of: 

• Calculator 

• Graphs 

• Geometry 

• Lists & Spreadsheet 

• Notes 

• Data & Statistics 

• Program Editor. 

Including Notes areas and/or pages such as 
the example shown here, allows you to 
describe aspects of your problem: your 
strategy, suppositions, conclusions, next 
steps etc.  

 

 
 
 

 
 

 


